

ST10R172L

16-BIT LOW VOLTAGE ROMLESS MCU

DATASHEET

■ High Performance 16-bit CPU

- CPU Frequency: 0 to 50 MHz
- 40ns instruction cycle time at 50-MHz CPU clock
- 4-stage pipeline
- Register-based design with multiple variable register banks
- Enhanced boolean bit manipulation facilities
- Additional instructions to support HLL and operating systems
- Single-cycle context switching support
- 1024 bytes on-Chip special function register area

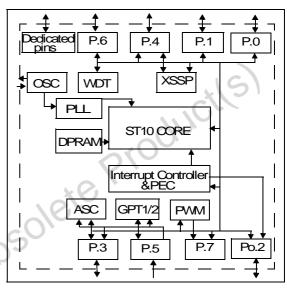
Memory Organisation

- 1KByte on-chip RAM
- Up to 16 MBytes linear address space for code and data (1 MByte with SSP used)

■ External Memory Interface

- Programmable external bus characteristics for different address ranges
- 8-bit or 16-bit external data bus
- Multiplexed or demultiplexed external address/data buses
- Five programmable chip-select signals
- Hold and hold-acknowledge bus arbitration support

One Channel PWM Unit


Fail Safe Protection

- Programmable watchdog timer
- Oscillator Watchdog

Interrupt

- 8-channel interrupt-driven single-cycle data transfer facilities via peripheral event controller (PEC)
- 16-priority-level interrupt system with 17 sources, sample-rate down to 40 ns

■ Timers

- Two multi-functional general purpose timer units with 5 timers
- Clock Generation via on-chip PLL, or via direct or prescaled clock input

Serial Channels

- Synchronous/asynchronous
- High-speed-synchronous serial port SSP
- Up to 77 general purpose I/O lines
- No bootstrap loader

Electrical Characteristics

- 5V Tolerant I/Os
- 5V Fail-Safe Inputs (Port 5)
- Power: 3.3 Volt +/-0.3V
- Idle and power down modes

Support

 C-compilers, macro-assembler packages, emulators, evaluation boards, HLLdebuggers, simulators, logic analyser disassemblers, programming boards

Package

• 100-Pin Thin Quad Flat Pack (TQFP)

March 2001 1/68

Table of Contents

1 PIN DESCRIPTION	4
2 FUNCTIONAL DESCRIPTION	11
3 MEMORY MAPPING	12
4 CENTRAL PROCESSING UNIT	13
5 INTERRUPT AND TRAP FUNCTIONS	14
5.1 INTERRUPT SOURCES	
5.2 HARDWARE TRAPS	
6 PARALLEL PORTS	17
7 EXTERNAL BUS CONTROLLER	17
8 PWM MODULE	18
9 GENERAL PURPOSE TIMERS	19
9.1 GPT1	19
9.2 GPT2	21
9.2 GPT2	22
11 WATCHDOG TIMER	24
12 SYSTEM RESET	25
13 POWER REDUCTION MODES	
14 SPECIAL FUNCTION REGISTERS	26
15 ELECTRICAL CHARACTERISTICS	31
15.1 ABSOLUTE MAXIMUM RATINGS	31
AS A DA OHADA OTEDIOTION	0.0

Table of Contents -

15.3 AC CHARAC	TERISTICS 36
15.3.1 Cpu Cloc	k Generation Mechanisms
15.3.2 Memory	Cycle Variables
15.3.3 Multiplex	ed Bus
15.3.4 Demultip	exed Bus 50
15.3.5 CLKOUT	and READY/READY57
15.3.6 External	Bus Arbitration
15.3.7 External	Hardware Reset
15.3.8 Synchror	ous Serial Port Timing
16 PACKAGE MECH	ANICAL DATA
17 ORDERING INFO	ANICAL DATA

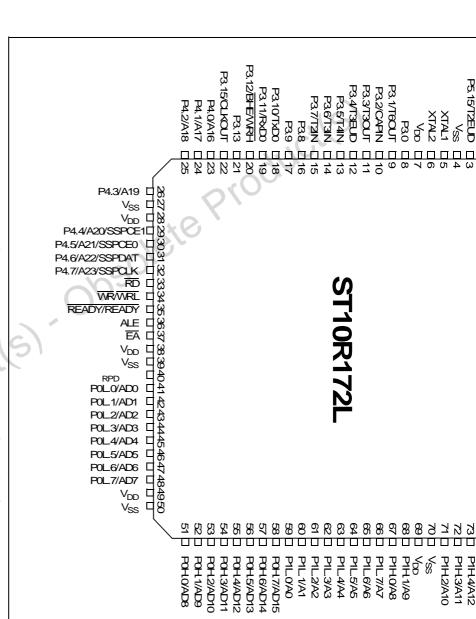


Figure 1 TQFP-100 pin configuration (top view)

solete Produ

Symbol	Pin Number (TQFP)	Input (I) Output (O)	Kind ¹⁾	Function					
P5.10	98-100	ı	5S			th Schmitt-Trigger characteristics.			
–P5.15	1- 3	I	5S	Port 5 pins	s also serve	as timer inputs:			
	98	I	5S	P5.10	T6EUD	GPT2 Timer T6 Ext.Up/Down Ctrl.Input			
	99	I	5S	P5.11	T5EUD	GPT2 Timer T5 Ext.Up/Down Ctrl.Input			
	100	I	5S	P5.12	5.12 T6IN GPT2 Timer T6 Count Input				
	1	I	5S	P5.13	T5IN	GPT2 Timer T5 Count Input			
	2	I	5S	P5.14	T4EUD	GPT1 Timer T4 Ext.Up/Down Ctrl.Input			
	3	I	5S	P5.15	T2EUD	GPT1 Timer T2 Ext.Up/Down Ctrl.Input			
XTAL1	5	I	3T	XTAL1:	Input to the generator	e oscillator amplifier and internal clock			
XTAL2	6	0	3Т	XTAL2:	Output of the oscillator amplifier circuit.				
\ C	te P	y O) .		To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Observe minimum and maximum high/low and rise/fall times specified in the AC Characteristics.				

Table 1 Pin definitions

Symbol	Pin Number (TQFP)	Input (I) Output (O)	Kind ¹⁾	Function							
P3.0 – P3.13	8-21	I/O	5T			ing) bidirectional I/O port. Port 3 is bit- input or output via direction bits. For a					
P3.15	22	I/O	5T	pin configui impedance	pin configured as input, the output driver is put into high- impedance state. Port 3 outputs can be configured as push/ pull or open drain drivers. The following pins have alternate						
	9	0	5T	P3.1	T6OUT	GPT2 Timer T6 toggle latch output					
	10	I	5T	P3.2	P3.2 CAPIN GPT2 Register CAPREL cap input						
	11	0	5T	P3.3	T3OUT	GPT1 Timer T3 toggle latch output					
	12	I	5T	P3.4	T3EUD	GPT1 Timer T3 ext.up/down ctrl.input					
	13	I	5T	P3.5	T4IN	GPT1 Timer T4 input for count/gate/ reload/capture					
	14	I	5T	P3.6	T3IN	GPT1 Timer T3 count/gate input					
	15	ı	5T	P3.7	T2IN	GPT1 Timer T2 input for count/gate/ reload/capture					
	18	0	5T	P3.10	TxD0	ASC0 clock/data output (asyn./syn.)					
	19	I/O	5T	P3.11	RxD0	ASC0 data input (asyn.) or I/O (syn.)					
7/6	20	0	5T	P3.12	BHE	Ext. Memory High Byte Enable Signal					
SO"		0	5T		WRH	Ext. Memory High Byte Write Strobe					
	22	0	5T	P3.15	CLKOUT	System clock output (=CPU clock)					

Table 1 Pin definitions

Symbol	Pin Number (TQFP)	Input (I) Output (O)	Kind ¹⁾	Function					
P4.0- P4.7	23-26 29-32-	I/O	5T	An 8-bit bidirectional I/O port. Port 8 is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. Port 4 can be used to output the segment address lines for external bus configuration.					
	23	0	5T	P4.0	A16	Least Significant Segment Addr. Line			
	26	0	5T	P4.3	A19	Segment Address Line			
	29	0	5T	P4.4	A20	Segment Address Line			
		0	5T		SSPCE1	Chip Enable Line 1			
	30	0	5T	P4.5	A21	Segment Address Line			
		0	5T		SSPCE0	SSPChip Enable Line 0			
	31	0	5T	P4.6	A22	Segment Address Line			
		I/O	5T		SSPDAT	SSP Data Input/Output Line			
	32	0	5T	P4.7	A23	Most Significant Segment Addr. Line			
	P	0	5T		SSPCLK	SSP Clock Output Line			
RD	33	0	5T		lemory Read tion or data r	Strobe. RD is activated for every exteread access.			
WR/ WRL	34	0	5T	External Memory Write Strobe. In WR-mode, this pin is activated for every external data write access. In WRL-mode, this pin is activated for low byte data write accesses on a 16-bit bus, and for every data write access on an 8-bit bus. See WRCFG in the SYSCON register for mode selection.					
READY/ READY	35	I	5T	function is ing an exte ory cycle t	enabled, the ernal memory ime waitstate	rel is programmable. When the Ready e selected inactive level at this pin dury access will force the insertion of memes until the pin returns to the selected programmable.			

Table 1 Pin definitions

477

Symbol	Pin Number (TQFP)	Input (I) Output (O)	Kind ¹⁾	Function					
ALE	36	0	5T		•	e used for latching the address latch in the multi-			
ĒĀ	37	I	5T	External Access Enable pin. Low level at this pin during and after reset forces the ST10R172L to begin instruction execution out of external memory. A high level forces execution out of the internal ROM. The ST10R172L must have this pin tied to '0'.					
PORT0: P0L.0- P0L.7, P0H.0 - P0H.7	41 - 48 51 - 58	1/0	5T						
PORT1: P1L.0- P1L.7, P1H.0 - P1H.7	59- 66 67, 68 71-76	I/O	5T	PORT1 has two 8-bit bidirectional I/O ports P1L and P1H. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. PORT1 acts as a 16-bit address bus (A) in demultiplexed bus modes and also after switching from a demultiplexed bus mode to a multiplexed bus mode.					

Table 1 Pin definitions

Symbol	Pin Number (TQFP)	Input (I) Output (O)	Kind ¹⁾	Function						
RSTIN	79	I	5T	Reset Input with Schmitt-Trigger characteristics. Resets the device when a low level is applied for a specified duration while the oscillator is running. An internal pullup resistor enables power-on reset using only a capacitor connected to V _{SS} . With a bonding option, the RSTIN pin can also be pulled-down for 512 internal clock cycles for hardware, software or watchdog timer triggered resets						
RSTOUT	80	0	5T	Internal Reset Indication Output. This pin is set to a low level when the part is executes hardware-, software- or watchdog timer reset. RSTOUT remains low until the EINIT (end of initialization) instruction is executed.						
NMI	81	_	5S	pin causes	s the CPU to	ot Input. A high to low transition at this vector to the NMI trap routine. nould be pulled high externally.				
P6.0- P6.7	82-89	9	5T	for input of input, the o outputs ca	r output via output driver in be configu	O port. Port 6 is bit-wise programmable direction bits. For a pin configured as is put into high-impedance state. Port 6 ured as push/pull or open drain drivers. ns have alternate functions:				
	82	0	5T	P6.0	CS0	Chip Select 0 Output				
	X16 X									
0/8	86	0	5T	P6.4	CS4	Chip Select 4 Output				
050	87	I	5T	P6.5 HOLD External Master Hold Request Input (Master mode: O, Slave mode: I)						
	88	I/O	5T	P6.6	HLDA	Hold Acknowledge Output				
	89	0	5T	P6.7	BREQ	Bus Request Output				

Table 1 Pin definitions

Symbol	Pin Number (TQFP)	Input (I) Output (O)	Kind ¹⁾	Function					
P2.8 – P2.11	90 - 93	I/O	5T	Port 2 is a 4-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. Port 2 outputs can be configured as push/pull or open drain drivers.					
				The following Port 2 pins have alternate functions:					
	90	I	5T	P2.8 EX0IN Fast External Interrupt 0 Input					
	93	I	5T	P2.11 EX3IN Fast External Interrupt 3 Input					
P7.0 – P7.3	94 - 97	I/O	5T	Port 7 is a 4-bit bidirectional I/O port. It is bit-wise programma- ble for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. Port 7 outputs can be configured as push/pull or open drain drivers. The following Port 7 pins have alternate functions:					
	97	0	5T	P7.3 POUT3 PWM (Channel 3) Output					
RPD	40	I/O	5T	Input timing pin for the return from powerdown circuit and power-up asynchronous reset.					
V _{DD}	7, 28, 38, 49, 69, 78	ho,	РО	Digital supply voltage.					
V _{SS}	4, 27, 39, 50, 70, 77	-	РО	Digital ground.					

Table 1 Pin definitions

¹⁾ The following I/O kinds are used. Refer to *ELECTRICAL CHARACTERISTICS* on page 31 for a detailed description.

PO: Power pin

³T: 3 V tolerant pin (voltage max. respect to Vss is -0.5 to VDD + 0.5)

⁵V: 5 V tolerant pin (voltage max. respect to Vss is -0.5 to 5.5 only if chip is powered)

⁵S: 5 V tolerant and fail-safe pin (-0.5-5.5 max. voltage w.r.t. Vss even if chip is not powered).

2 FUNCTIONAL DESCRIPTION

ST10R172L architecture combines the advantages of both RISC and CISC processors with an advanced peripheral subsystem. The following block diagram overviews the different on-chip components and the internal bus structure.

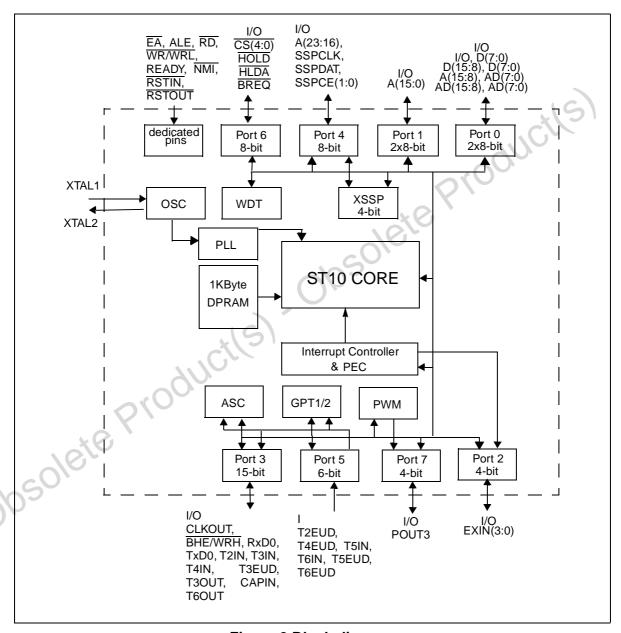


Figure 2 Block diagram

3 MEMORY MAPPING

The ST10R172L is a ROMless device, the internal RAM space is 1 KByte. The RAM address space is used for variables, register banks, the system stack, the PEC pointers (in 00'FCE0h - 00'FCFFh) and the bit-addressable space (in 00'FD00h - 00'FDFFh).

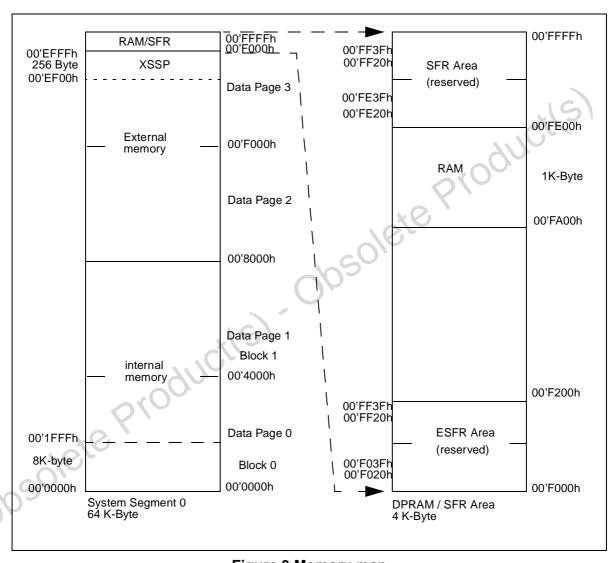


Figure 3 Memory map

4 CENTRAL PROCESSING UNIT

The main core of the CPU contains a 4-stage instruction pipeline, a separate multiply and divide unit, a bit-mask generator and a barrel shifter. Most instructions can be executed in one machine cycle requiring 40ns at 50MHz CPU clock.

The CPU includes an actual register context consisting of 16 wordwide GPRs physically located in the on-chip RAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, one register bank may overlap others.

A system stack of up to 1024 bytes is provided as a storage for temporary data. The system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are compared against the stack pointer value during each stack access to detect stack overflow or underflow.

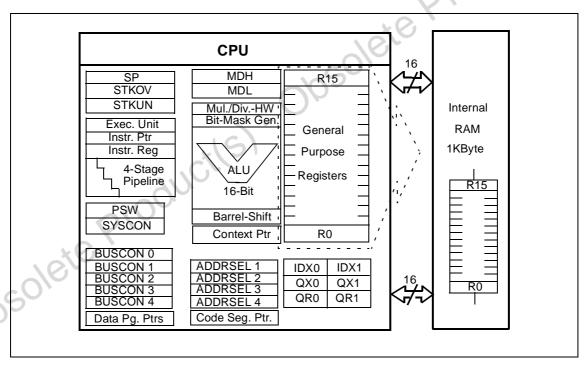


Figure 4 CPU block diagram

5 INTERRUPT AND TRAP FUNCTIONS

The architecture of the ST10R172L supports several mechanisms for fast and flexible response to the service requests that can be generated from various sources, internal or external to the microcontroller. Any of these interrupt requests can be programmed to be serviced, either by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In a standard interrupt service, program execution is suspended and a branch to the interrupt service routine is performed. For a PEC service, just one cycle is 'stolen' from the current CPU activity. A PEC service is a single, byte or word data transfer between any two memory locations, with an additional increment of either the PEC source or the destination pointer. An individual PEC transfer counter is decremented for each PEC service, except in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source-related vector location. PEC services are very well suited, for example, to the transmission or reception of blocks of data. The ST10R172L has 8 PEC channels, each of which offers fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield, exists for each of the possible interrupt sources. Via its related register, each source can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher priority service request. For standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs, feature programmable edge detection (rising edge, falling edge or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

5.1 Interrupt Sources

Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
External Interrupt 0	CC8IR	CC8IE	CC8INT	60h	18h
External Interrupt 1	CC9IR	CC9IE	CC9INT	64h	19h
External Interrupt 2	CC10IR	CC10IE	CC10INT	68h	1Ah
External Interrupt 3	CC11IR	CC11IE	CC11INT	6Ch	1Bh
GPT1 Timer 2	T2IR	T2IE	T2INT	88h	22h
GPT1 Timer 3	T3IR	T3IE	T3INT	8Ch	23h
GPT1 Timer 4	T4IR	T4IE	T4INT	90h	24h
GPT2 Timer 5	T5IR	T5IE	T5INT	94h	25h
GPT2 Timer 6	T6IR	T6IE	T6INT	98h	26h
GPT2 CAPREL Register	CRIR	CRIE	CRINT	9Ch	27h
ASC0 Transmit	S0TIR	S0TIE	S0TINT	A8h	2Ah
ASC0 Transmit Buffer	S0TBIR	SOTBIE	SOTBINT	11Ch	47h
ASC0 Receive	SORIR	SORIE	SORINT	ACh	2Bh
ASC0 Error	S0EIR	SOEIE	SOEINT	B0h	2Ch
PWM Channel 3	PWMIR	PWMIE	PWMINT	FCh	3Fh
SSP Interrupt	XP1IR	XP1IE	XP1INT	104h	41h
PLL Unlock	XP3IR	XP3IE	XP3INT	10Ch	43h

Table 2 List of possible interrupt sources, flags, vector and trap numbers

5.2 Hardware traps

Exceptions or error conditions that arise during run-time are called Hardware Traps. Hardware traps cause immediate non-maskable system reaction similar to a standard interrupt service (branching to a dedicated vector table location). The occurrence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can not normally be interrupted by standard or PEC interrupts. The following table shows all of the possible exceptions or error conditions that can arise during run-time:

Exception Condition	Trap Flag	Trap Vector	Vector Location	Trap Number	Trap Priority
Reset Functions:				0	
Hardware Reset		RESET	00'0000h	00h	III
Software Reset		RESET	00'0000h	00h	III
Watchdog Timer Overflow		RESET	00'0000h	00h	III
Class A Hardware Traps:		4/02			
Non-Maskable Interrupt	NMI	NMITRAP	00'0008h	02h	II
Stack Overflow	STKOF	STOTRAP	00'0010h	04h	II
Stack Underflow	STKUF	STUTRAP	00'0018h	06h	II
Class B Hardware Traps:					
Undefined opcode	UNDOPC	BTRAP	00'0028h	0Ah	I
Protected instruction fault	PRTFLT	BTRAP	00'0028h	0Ah	I
Illegal word operand access	ILLOPA	BTRAP	00'0028h	0Ah	I
Illegal instruction access	ILLINA	BTRAP	00'0028h	0Ah	I
Illegal external bus access	ILLBUS	BTRAP	00'0028h	0Ah	I
Reserved			[2Ch - 3Ch]	[0Bh - 0Fh]	
Software Traps					
TRAP Instruction			Any [00'0000h - 00'01FCh] steps of 4h	Any [00h – 7Fh]	Current CPU Priority

Table 3 Exceptions or error conditions

6 PARALLEL PORTS

The ST10R172L provides up to 77 I/O lines organized into 7 input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs by direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of three I/O ports can be configured (pin by pin) for push/pull operation or open-drain operation by control registers. During the internal reset, all port pins are configured as inputs.

All port lines have programmable alternate input or output functions associated with them. PORT0 and PORT1 may be used as address and data lines when accessing external memory, while Port 4 outputs the additional segment address bits A23/19/17...A16 in systems where segmentation is enabled to access more than 64 KBytes of memory. Port 6 provides optional bus arbitration signals (BREQ, HLDA, HOLD) and chip select signals. Port 3 includes alternate functions of timers, serial interfaces, the optional bus control signal BHE and the system clock output (CLKOUT). Port 5 is used for timer control signals. Port 2 lines can be used as fast external interrupt lines. Port 7 includes alternate function for the PWM signal. All port lines that are not used for these alternate functions may be used as general purpose I/O lines.

7 EXTERNAL BUS CONTROLLER

All external memory accesses are performed by the on-chip External Bus Controller which can be programmed either to single chip mode when no external memory is required, or to the following external memory access modes:

16-bit data, demultiplexed
16-bit data, multiplexed
16-bit data, multiplexed
16-/18-/20-/24-bit addresses
8-bit data, multiplexed
16-/18-/20-/24-bit addresses
8-bit data, demultiplexed
16-/18-/20-/24-bit addresses

In the demultiplexed bus modes, addresses are output on PORT1 and data is input/output on PORT0/P0L, respectively. In the multiplexed bus modes both addresses and data use PORT0 for input/output.

Memory cycle time, memory tri-state time, length of ALE and read write delay are programmable so that a wide range of different memory types and external peripherals can be used. Up to 4 independent address windows can be defined (via ADDRSELx / BUSCONx register pairs) to access different resources with different bus characteristics. These address windows are arranged hierarchically where BUSCON4 overrides BUSCON3 etc. All accesses to locations not covered by these 4 address windows are controlled by BUSCON0. Up to 5 external $\overline{\text{CS}}$ signals (4 windows plus default) can be generated to reduce external glue logic. Access to very slow memories is supported by the READY function.

A HOLD/HLDA protocol is available for bus arbitration so that external resources can be shared with other bus masters. In slave mode, the slave controller can be connected to another master controller without glue logic. For applications which require less than 16 MBytes

of external memory space, the address space can be restricted to 1 MByte, 256 KByte or to 64 KByte.

8 PWM MODULE

A 1-channel Pulse Width Modulation (PWM) Module operates on channel 3. The pulse width modulation module can generate up to four PWM output signals using edge-aligned or centre-aligned PWM. In addition, the PWM module can generate PWM burst signals and single shot outputs. The table below shows the PWM frequencies for different resolutions. The level of the output signals is selectable and the PWM module can generate interrupt requests.

Mode 0 edge aligned	Resolution	8-bit	10-bit	12-bit	14-bit	16-bit
CPU clock/1	20ns	195.3 KHz	48.83KHz	12.21KHz	3.052KHz	762.9Hz
CPU clock/64	1.28ns	3.052KHz	762.9Hz	190.7Hz	47.68Hz	11.92Hz
Mode 1 center aligned	Resolution	8-bit	10-bit	12-bit	14-bit	16-bit
CPU clock/1	20ns	97.66KHz	24.41KHz	6.104KHz	1.525KHz	381.5Hz
CPU clock/64	1.28ns	1.525Hz	381.5 Hz	95.37Hz	23.84Hz	0Hz

Table 4 PWM unit frequencies and resolution at 50MHz CPU clock

9 GENERAL PURPOSE TIMERS

The GPTs are flexible multifunctional timer/counters used for time-related tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation or pulse multiplication. The GPT unit contains five 16-bit timers, organized in two separate modules, GPT1 and GPT2. Each timer in each module may operate independently in a number of different modes, or may be concatenated with another timer of the same module.

9.1 GPT1

Each of the three timers T2, T3, T4 of the GPT1 module can be configured individually for one of four basic modes of operation: timer, gated timer, counter mode and incremental interface mode. In timer mode, the input clock for a timer is derived from the CPU clock, divided by a programmable prescaler. In counter mode, the timer is clocked in reference to external events. Pulse width or duty cycle measurement is supported in gated timer mode where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes, each timer has one associated port pin (TxIN) which serves as gate or clock input. Table 5 GPT1 timer input frequencies, resolution and periods lists the timer input frequencies, resolution and periods for each pre-scaler option at 50MHz CPU clock. This also applies to the Gated Timer Mode of T3 and to the auxiliary timers T2 and T4 in Timer and Gated Timer Mode

The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD).

In Incremental Interface Mode, the GPT1 timers (T2, T3, T4) can be directly connected to the incremental position sensor signals A and B by their respective inputs TxIN and TxEUD. Direction and count signals are internally derived from these two input signals so that the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has output toggle latches (TxOTL) which changes state on each timer over-flow/ underflow. The state of this latch may be output on port pins (TxOUT) e. g. for time out monitoring of external hardware components, or may be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be constantly generated without software intervention.

F _{CPU} =50MHz	Timer input selection										
	000b	001b	010b	011b	100b	101b	110b	111b			
Prescaler Factor	8	16	32	64	128	256	512	1024			
Input Frequency	6.25 MHz	3.125 MHz	1.5625 MHz	781 KHz	391 KHz	195 KHz	97.5 KHz	48.83 KHz			
Resolution	160ns	320ns	640ns	1.28 us	2.56 us	5.12 us	10.24 us	20.48 us			
Period	10.49ms	20.97ms	41.94ms	83.88ms	168ms	336ms	672ms	1.342s			

Table 5 GPT1 timer input frequencies, resolution and periods

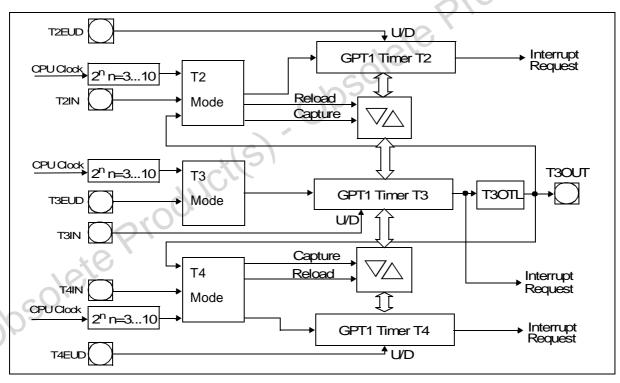


Figure 5 GPT1 block diagram

9.2 GPT2

The GPT2 module provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock derived from the CPU clock via a programmable prescaler or with external signals. The count direction (up/down) for each timer is programmable by software or altered dynamically by an external signal on a port pin (TxEUD). Concatenation of the timers is supported by the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of T6OTL may be used to clock timer T5, or may be output on a port pin T6OUT. The overflows/underflows of timer T6 reload the CAPREL register. The CAPREL register captures the contents of T5 based on an external signal transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared after the capture procedure. This allows absolute time differences to be measured or pulse multiplication to be performed without software overhead.

F _{CPU} =50MHz	Timer input selection									
CPU-30111112	000b	001b	010b	011b	100b	101b	110b	111b		
Prescaler Factor	4	8	16	32	64	128	256	512		
Input Frequency	12.5 MHz	6.25 MHz	3.125 MHz	1.563 MHz	781 KHz	391 KHz	195 KHz	97.6 KHz		
Resolution	80ns	160ns	320ns	640ns	1.28 us	2.56 us	5.12 us	10.24 us		
Period	5.24ms	10.49ms	20.97ms	41.94ms	83.88ms	167.7ms	335.5ms	671ms		

Table 6 GPT2 timer input frequencies, resolution and periods

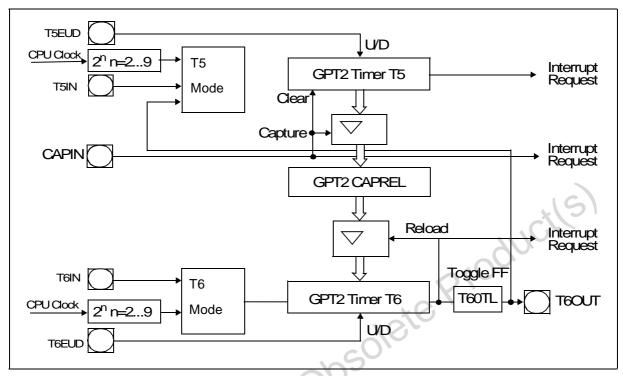


Figure 6 GPT2 block diagram

10 SERIAL CHANNELS

Serial communication with other microcontrollers, processors, terminals or external peripheral components is provided by two serial interfaces with different functionality, an Asynchronous/ Synchronous Serial Channel (ASC0) and a Synchronous Serial Port (SSP).

ASC₀

A dedicated baud rate generator sets up standard baud rates without oscillator tuning. 3 separate interrupt vectors are provided for transmission, reception, and erroneous reception. In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data + wake up bit mode).

In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop back option is available for testing purposes.

A number of optional hardware error detection capabilities have been included to increase the reliability of data transfers. A parity bit can be generated automatically on transmission, or checked on reception. Framing error detection recognizes data frames with missing stop bits. An overrun error is generated if the last character received was not read out of the receive buffer register at the time the reception of a new character is complete. The table below lists

various commonly used baud rates together with the required reload values and the deviation errors compared to the intended baudrate.

S0BRS = '0	', f _{CPU} =	50MHz		S0BRS = '1', f _{CPU} = 50MHz			
Baud Rate (Baud)	Deviation Error		Reload Value	Baud Rate (Baud)	Deviatio	n Error	Reload Value
1562500	0.0%	/ 0.0%	0000 _H / 0000 _H	1041666	0.0%	/ 0.0%	0000 _H / 0000 _H
56000	+3.3%	/ -0.4%	001A _H / 001B _H	56000	+3.3%	/ -2.1%	0011 _H / 0012 _H
38400	+1.7%	/ -0.8%	0027 _H / 0028 _H	38400	+0.5%	/ -3.1%	001A _H / 001B _H
19200	+0.5%	/ -0.8%	0050 _H / 0051 _H	19200	+0.5%	/-1.4%	0035 _H / 0036 _H
9600	+0.5%	/ -0.1%	00A1 _H / 00A2 _H	9600	+0.5%	/ -0.5%	006B _H / 006C _H
4800	+0.2%	/ -0.1%	0144 _H / 0145 _H	4800	0.0%	/-0.5%	00D8 _H / 00D9 _H
2400	0.0%	/ -0.1%	028A _H / 028B _H	2400	0.0%	/ -0.2%	01B1 _H / 01B2 _H
1200	0.0%	/ -0.1%	0515 _H / 0516 _H	1200	0.0%	/ -0.1%	0363 _H / 0364 _H
600	0.0%	/ 0.0%	0A2B _H / 0A2C _H	600	0.0%	/ -0.1%	06C7 _H / 06C8 _H
190	+0.4%	/+0.4%	1FFF _H / 1FFF _H	75	0.0%	/ 0.0%	363F _H / 3640 _H
			CIL	127	+0.1%	/ +0.1%	1FFF _H / 1FFF _H

Table 7 Commonly used baud rates, required reload values and deviation errors

SSP transmits 1...3 bytes or receives 1 byte after sending 1...3 bytes synchronously to a shift clock which is generated by the SSP. The SSP can start shifting with the LSB or with the MSB and is used to select shifting and latching clock edges, and clock polarity. Up to two chip select lines may be activated in order to direct data transfers to one or both of two peripheral devices.

When the SSP is enabled, the four upper pins of Port4 can not be used as general purpose IO. Note that the segment address selection done via the system start-up configuration during reset has priority and overrides the SSP functions on these pins.

SSPCKS Value		Synchronous baud rate
000	SSP clock = CPU clock divided by 2	25 MBit/s
001	SSP clock = CPU clock divided by 4	12.5 MBit/s
010	SSP clock = CPU clock divided by 8	6.25 MBit/s

Table 8 Synchronous baud rate and SSPCKS reload values

<u> 57</u>

SSPCKS Value		Synchronous baud rate
011	SSP clock = CPU clock divided by 16	3.13 MBit/s
100	SSP clock = CPU clock divided by 32	1.56 MBit/s
101	SSP clock = CPU clock divided by 64	781 KBit/s
110	SSP clock = CPU clock divided by 128	391 KBit/s
111	SSP clock = CPU clock divided by 256	195 KBit/s

Table 8 Synchronous baud rate and SSPCKS reload values

11 WATCHDOG TIMER

The Watchdog Timer is a fail-safe mechanism which limits the malfunction time of the controller. The Watchdog Timer is always enabled after device reset and can only be disabled in the time interval until the EINIT (end of initialization) instruction has been executed. In this way, the chip's start-up procedure is always monitored. The software must be designed to service the Watchdog Timer before it overflows. If, due to hardware or software related failures, the software fails to maintain the Watchdog Timer, it will overflow generating an internal hardware reset and pulling the RSTOUT pin low to reset external hardware components.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided either by 2 or by 128. The high byte of the Watchdog Timer register can be set to a pre-specified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the high byte of the Watchdog Timer is reloaded. The table below shows the watchdog time range which for a 50MHz CPU clock rounded to 3 significant figures.

Reload value	Prescaler for f _{CPU}					
in WDTREL	2 (WDTIN = '0')	128 (WDTIN = '1')				
FF _H	10.24 µs	655 µs				
00 _H	2.62 ms	168 ms				

Table 9 Watchdog timer range

12 SYSTEM RESET

The following type of reset are implemented on the ST10R172L:

Asynchronous hardware reset: Asynchronous reset does not require a stabilized clock signal on XTAL1 as it is not internally resynchronized, it resets the microcontroller into its default reset state. Asynchronous reset is required on chip power-up and can be used during catastrophic situations. The rising edge of the RSTIN pin is internally resynchronized before exiting the reset condition, therefore, only the entry to hardware reset is asynchronous.

Synchronous hardware reset (warm reset): A warm synchronous hardware reset is triggered when the reset input signal RSTIN is latched low and Vpp pin is high. The I/Os are immediately (asynchronously) set in high impedance, RSTOUT is driven low. After RSTIN negation is detected, a short transition period elapses, during which pending internal hold states are cancelled and any current internal access cycles are completed, external bus cycles are aborted. Then, the internal reset sequence is active for 1024 TCL (512 CPU clock cycles). During this reset sequence, if bit BDRSTEN was previously set by software (bit 3 in SYSCON register), RSTIN pin is driven low and internal reset signal is asserted to reset the microcontroller in its default state. Note that after all reset sequence, bit BDRSTEN is cleared. After the reset sequence has been completed, the RSTIN input is sampled. When the reset input signal is active at that time the internal reset condition is prolonged until RSTIN becomes inactive.

Software reset: The reset sequence can be triggered at any time by the protected instruction SRST (software reset). This instruction can be executed deliberately within a program, e.g. to leave bootstrap loader mode, or on a hardware trap that reveals a system failure. As for a synchronous hardware reset, if bit BDRSTEN was previously set by software (bit 3 in SYSCON register), the reset sequence lasts 1024 TCL (512 CPU clock cycles), and drives the RSTIN pin low.

Watchdog timer reset: When the watchdog timer is not disabled during the initialization or serviced regularly during program execution it will overflow and trigger the reset sequence. Unlike hardware and software resets, the watchdog reset completes a running external bus cycle if this bus cycle does not use READY, or if READY is sampled active (low) after the programmed waitstates. When READY is sampled inactive (high) after the programmed waitstates the running external bus cycle is aborted. Then the internal reset sequence is started. The watchdog reset cannot occur while the ST10R172L is in bootstrap loader mode.

Bidirectional reset: The bidirectional reset is activated by setting bit BDRSTEN (bit 3 in SYSCON register). This reset makes the watchdog timer reset and software reset externally visible. It is active for the duration of an internal reset sequences caused by a watchdog timer reset and software reset. Therefore, the bidirectional reset transforms an internal watchdog timer reset or software reset into an external hardware reset with a minimum duration of 1024 TCL.

57

13 POWER REDUCTION MODES

Two different power reduction modes with different levels of power reduction can be entered under software control.

In **Idle mode** the CPU is stopped, while the peripherals continue their operation. Idle mode can be terminated by any reset or interrupt request.

In **Power Down mode** both the CPU and the peripherals are stopped. Power Down mode can now be configured by software in order to be terminated only by a hardware reset or by an external interrupt source on fast external interrupt pins.

All external bus actions are completed before Idle or Power Down mode is entered. However, Idle or Power Down mode is **not** entered if READY is enabled, but has not been activated (driven low for negative polarity, or driven high for positive polarity) during the last bus access.

14 SPECIAL FUNCTION REGISTERS

The following table lists all ST10R172L SFRs in alphabetical order. Bit-addressable SFRs are marked with the letter "b" in column "Name". SFRs within the Extended SFR-Space (ESFRs) are marked with the letter "E" in column "Physical Address".

An SFR can be specified by its individual mnemonic name. Depending on the selected addressing mode, an SFR can be accessed by its physical address (using the Data Page Pointers), or by its short 8-bit address (without using the Data Page Pointers).

Name Physical Address		8-Bit Address	Description	Reset Value
ADDRSEL1	FE18h	0Ch	Address Select Register 1	0000h
ADDRSEL2	FE1Ah	0Dh	Address Select Register 2	0000h
ADDRSEL3	FE1Ch	0Eh	Address Select Register 3	0000h
ADDRSEL4	FE1Eh	0Fh	Address Select Register 4	0000h
BUSCON0 b	FF0Ch	86h	Bus Configuration Register 0	0XX0h
BUSCON1 b	FF14h	8Ah	Bus Configuration Register 1	0000h
BUSCON2 b	FF16h	8Bh	Bus Configuration Register 2	0000h
BUSCON3 b	FF18h	8Ch	Bus Configuration Register 3	0000h
BUSCON4 b	FF1Ah	8Dh	Bus Configuration Register 4	0000h
CAPREL	FE4Ah	25h	GPT2 Capture/Reload Register	0000h
CC8IC b	FF88h	C4h	EX0IN Interrupt Control Register	0000h

Table 10 Special functional registers

Name		Physica Address		8-Bit Address	Description	Reset Value
CC9IC	b	FF8Ah		C5h	EX1IN Interrupt Control Register	0000h
CC10IC	b	FF8Ch		C6h	EX2IN Interrupt Control Register	0000h
CC11IC	b	FF8Eh		C7h	EX3IN Interrupt Control Register	0000h
СР		FE10h		08h	CPU Context Pointer Register	FC00h
CRIC	b	FF6Ah		B5h	GPT2 CAPREL Interrupt Control Register	0000h
CSP		FE08h		04h	CPU Code Segment Pointer Register (read only)	0000h
DP0L	b	F100h	Е	80h	P0L Direction Control Register	00h
DP0H	b	F102h	Е	81h	P0h Direction Control Register	00h
DP1L	b	F104h	Е	82h	P1L Direction Control Register	00h
DP1H	b	F106h	Е	83h	P1h Direction Control Register	00h
DP2	b	FFC2h		E1h	Port 2 Direction Control Register	-0h
DP3	b	FFC6h		E3h	Port 3 Direction Control Register	0000h
DP4	b	FFCAh		E5h	Port 4 Direction Control Register	00h
DP6	b	FFCEh		E7h	Port 6 Direction Control Register	00h
DP7	b	FFD2h	9	E9h	Port 7 Direction Control Register	-0h
DPP0		FE00h	7	00h	CPU Data Page Pointer 0 Register (10 bits)	0000h
DPP1	. O	FE02h		01h	CPU Data Page Pointer 1 Register (10 bits)	0001h
DPP2		FE04h		02h	CPU Data Page Pointer 2 Register (10 bits)	0002h
DPP3		FE06h		03h	CPU Data Page Pointer 3 Register (10 bits)	0003h
EBUSCON	b	F10Eh	Е	87H	Extended BUSCON register	0000h
EXICON	b	F1C0h	Е	E0h	External Interrupt Control Register	0000h
IDCHIP		F07Ch	Е	3Eh	Device Identifier Register	1101h
IDMANUF		F07Eh	Е	3Fh	Manufacturer/Process Identifier Register	0201h
IDMEM		F07Ah	Е	3Dh	On-chip Memory Identifier Register	0000h
IDPROG		F078h	Е	3Ch	Programming Voltage Identifier Register	0000h
MDC	b	FF0Eh		87h	CPU Multiply Divide Control Register	0000h

Table 10 Special functional registers

	_		8-Bit Address	Description		
	FE0Ch		06h	CPU Multiply Divide Register – High Word	0000h	
	FE0Eh		07h	CPU Multiply Divide Register – Low Word	0000h	
b	F1C2h	Е	E1h	Port 2 Open Drain Control Register	-0h	
b	F1C6h	Е	E3h	Port 3 Open Drain Control Register	0000h	
b	F1CEh	Е	E7h	Port 6 Open Drain Control Register	00h	
b	F1D2h	Е	E9h	Port 7 Open Drain Control Register	-0h	
	FF1Eh		8Fh	Constant Value 1's Register (read only)	FFFFh	
b	FF00h		80h	Port 0 Low Register (Lower half of PORT0)	00h	
b	FF02h		81h	Port 0 High Register (Upper half of PORT0)	00h	
b	FF04h		82h	Port 1 Low Register (Lower half of PORT1)	00h	
b	FF06h		83h	Port 1 High Register (Upper half of PORT1)	00h	
b	FFC0h		E0h	Port 2 Register (4 bits)	-0h	
b	FFC4h		E2h	Port 3 Register	0000h	
b	FFC8h		E4h	Port 4 Register (8 bits)	00h	
b	FFA2h	4	D1h	Port 5 Register (read only)	XXXXh	
b	FFCCh)	E6h	Port 6 Register (8 bits)	00h	
b	FFD0h		E8h	Port 7Register (4 bits)	-0h	
Sr	FEC0h		60h	PEC Channel 0 Control Register	0000h	
	FEC2h		61h	PEC Channel 1 Control Register	0000h	
	FEC4h		62h	PEC Channel 2 Control Register	0000h	
	FEC6h		63h	PEC Channel 3 Control Register	0000h	
FEC8h 64h PEC Channel 4 Control Register		PEC Channel 4 Control Register	0000h			
	FECAh		65h	PEC Channel 5 Control Register	0000h	
	FECCh		66h	PEC Channel 6 Control Register	0000h	
	FECEh		67h	PEC Channel 7 Control Register	0000h	
	F03Eh	E	1Fh	PWM Module Period Register 3	0000h	
	b b b b b b b b b b b	## Address FEOCh FEOEh b F1C2h b F1C6h b F1CEh b F1D2h FF1Eh b FF00h b FF04h b FFC0h b FFC4h b FFC8h b FFCCh b FFCCh b FFCCh c FECCh FECCCh FECCCh FECCCh FECCCh FECCCh FECCCh FECCCh FECCCCh FECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	FEOEh	Address Address FE0Ch 06h FE0Eh 07h b F1C2h E b F1C6h E b F1C6h E b F1C6h E b F1C6h E b F1D2h E b F1C6h B8h b FF02h B1h b FF04h B2h b FF06h B3h b FFC4h E2h b FFC8h E4h b FFC8h E4h b FFC8h E6h b FFC0h E6h b FFC0h E6h b FFC0h 60h FEC0h 60h FEC2h 61h FEC4h 62h FEC6h 63h FEC8h 64h FEC6h 65h FEC6h 66h FEC6h	Address Address FE0Ch O6h CPU Multiply Divide Register – High Word FE0Eh O7h CPU Multiply Divide Register – Low Word DF1C2h EF1Ch EF1Ch EF1Ch EF1Ch EF1Ch EF7h Port 2 Open Drain Control Register DF1CEh EF7h Port 6 Open Drain Control Register DF1D2h EF7D2h EF71Eh BF6h Constant Value 1's Register (read only) DF700h DF700h B700h B7	

Table 10 Special functional registers

Name		Physica Address		8-Bit Address	Description	Reset Value
PSW	b	FF10h		88h	CPU Program Status Word	0000h
PW3		FE36h		1Bh	PWM Module Pulse Width Register 3	0000h
PWMCON0	b	FF30h		98h	PWM Module Control Register 0	0000h
PWMCON1	b	FF32h		99h	PWM Module Control Register 1	0000h
PWMIC	b	F17Eh	Е	BFh	PWM Module Interrupt Control Register	0000h
RP0H	b	F108h	E	84h	System Start-up Configuration Register (Rd. only)	XXh
S0BG		FEB4h		5Ah	Serial Channel 0 baud rate generator reload reg	0000h
SOCON	b	FFB0h		D8h	Serial Channel 0 Control Register	0000h
S0EIC	b	FF70h		B8h	Serial Channel 0 Error Interrupt Control Register	0000h
S0RBUF		FEB2h		59h	Serial Channel 0 receive buffer reg. (rd only)	XXh
S0RIC	b	FF6Eh		B7h	Serial Channel 0 Receive Interrupt Control Reg.	0000h
S0TBIC	b	F19Ch	Е	CEh	Serial Channel 0 transmit buffer interrupt control reg	0000h
S0TBUF		FEB0h		58h	Serial Channel 0 transmit buffer register (wr only)	00h
SOTIC	b	FF6Ch	29	B6h	Serial Channel 0 Transmit Interrupt Control Register	0000h
SP		FE12h) -	09h	CPU System Stack Pointer Register	FC00h
SSPCON0	x (2	EF00h	Х		SSP Control Register 0	0000h
SSPCON1		EF02h	Х		SSP Control Register 1	0000h
SSPRTB		EF04h	Х		SSP Receive/Transmit Buffer	XXXXh
SSPTBH		EF06h	Х		SSP Transmit Buffer High	XXXXh
STKOV		FE14h		0Ah	CPU Stack Overflow Pointer Register	FA00h
STKUN		FE16h		0Bh	CPU Stack Underflow Pointer Register	FC00h
SYSCON	b	FF12h		89h	CPU System Configuration Register	
T2		FE40h		20h	GPT1 Timer 2 Register	0000h
T2CON	b	FF40h		A0h	GPT1 Timer 2 Control Register	0000h
T2IC	b	FF60h		B0h	GPT1 Timer 2 Interrupt Control Register	0000h

Table 10 Special functional registers

Name		Physical Address	8-Bit Address	Description	Reset Value
T3		FE42h	21h	GPT1 Timer 3 Register	0000h
T3CON	b	FF42h	A1h	GPT1 Timer 3 Control Register	0000h
T3IC	b	FF62h	B1h	GPT1 Timer 3 Interrupt Control Register	0000h
T4		FE44h	22h	GPT1 Timer 4 Register	0000h
T4CON	b	FF44h	A2h	GPT1 Timer 4 Control Register	0000h
T4IC	b	FF64h	B2h	GPT1 Timer 4 Interrupt Control Register	0000h
T5		FE46h	23h	GPT2 Timer 5 Register	0000h
T5CON	b	FF46h	A3h	GPT2 Timer 5 Control Register	0000h
T5IC	b	FF66h	B3h	GPT2 Timer 5 Interrupt Control Register	0000h
Т6		FE48h	24h	GPT2 Timer 6 Register	0000h
T6CON	b	FF48h	A4h	GPT2 Timer 6 Control Register	0000h
T6IC	b	FF68h	B4h	GPT2 Timer 6 Interrupt Control Register	0000h
TFR	b	FFACh	D6h	Trap Flag Register	0000h
WDT		FEAEh	57h	Watchdog Timer Register (read only)	0000h
WDTCON		FFAEh	D7h	Watchdog Timer Control Register	000xh ²⁾
XP1IC	b	F18Eh E	C7h	SSP Interrupt Control Register	0000h
XP3IC	b	F19Eh E	CFh	PLL unlock Interrupt Control Register	0000h
ZEROS	b	FF1Ch	8Eh	Constant Value 0's Register (read only)	0000h

Table 10 Special functional registers

Note 1. The system configuration is selected during reset.

Note 2. Bit WDTR indicates a watchdog timer triggered reset.

15 ELECTRICAL CHARACTERISTICS

15.1 Absolute Maximum Ratings

•	Ambient temperature under bias (T _A):40°C to +85 °C
•	Storage temperature (T _{ST}): – 65 to +150 °C
•	Voltage on V_{DD} pins with respect to ground (V_{SS}): – 0.5 to +4.0 V
•	Voltage on any pin with respect to ground (V _{SS}):0.5 to V _{DD} +0.5 V
•	Voltage on any 5V tolerant pin with respect to ground (V _{SS}):0.5 to 5.5 V
	Voltage on any 5V fail-safe pin with respect to ground (V _{SS}):0.5 to 5.5 V
•	Input current on any pin during overload condition:10 to +10 mA
•	Absolute sum of all input currents during overload condition:
•	Power dissipation:

Note Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not guaranteed. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions ($V_{\text{IN}} > V_{\text{DD}}$ or $V_{\text{IN}} < V_{\text{SS}}$) the voltage on pins with respect to ground (V_{SS}) must not exceed the values defined by the Absolute Maximum Ratings.

The parameters listed in this section represent both the ST10R172L controller characteristics and the system requirements. To aid parameters interpretation in design evaluation, the a symbol column is marked:

CC for Controller Characteristics: The ST10R172L logic provides signals with the

respective timing characteristics.

SR for System Requirement: The external system must provide signals with the

respective timing characteristics to the ST10R172L.

*5*77

Remarks on 5 volt tolerant (5T) and 5 volt fail-safe (5S) pins

The 5V tolerant input and output pins can sustain an absolute maximum external voltage of 5.5V.

However, signals on unterminated bus lines might have overshoot above 5.5V, presenting latchup and hot carrier risks. While these risks are under evaluation, observe the following security recommendations:

- Maximum peak voltage on 5V tolerant pin with respect to ground (V_{SS})= +6 V
- If the ringing of the external signal exceeds 6V, then clip the signal to the 5V supply.

Power supply failure condition

The power supply failure condition is a state where the chip is NOT supplied but is connected to active signal lines. There are several cases:

- 3.3V external lines on 3.3V (3T) pin on the non powered chip:.....NOT Acceptable
- 3.3V external lines on 5V tolerant (5T) pin on the non powered chip:...... Acceptable The 5V tolerant buffer do not leak: external signals not altered. No reliability problem.
- 3.3V external lines on 5V fail-safe (5S) pin on the non powered chip: Acceptable

 The 5V tolerant buffer do not leak: external signals not altered. No reliability problem.
- 5.5V external lines on 5V fail-safe (5S) pin on the non powered chip: Acceptable
- 6V transient signals on 5V tolerant (5T) pin on the non powered chip: ... NOT Acceptable
- 6V transient signals on 5V fail-safe (5S) pin on the non powered chip:....... Acceptable

477

15.2 DC Characteristics

 $V_{DD} = 3.3 \text{V} \pm 0.3 \text{V} \qquad V_{SS} = 0 \text{ V}$

Reset active $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}^{\circ}$

Parameter	Symbo	.1	Limit Values	S	Unit	Test Condition
raiametei			min.	max.		rest condition
Input low voltage	V _{IL}	SR	- 0.3	0.8	V	-
Input high voltage (all except RSTIN and XTAL1)	V _{IH}	SR	2.0	V _{DD} + 0.3	V	- (5)
Input high voltage RSTIN, RPD	V _{IH1}	SR	0.6 V _{DD}	V _{DD} + 0.3	V	-1C/
Input high voltage XTAL1	V _{IH2}	SR	0.7 V _{DD}	V _{DD} + 0.3	V)
Output low voltage (ALE, RD, WR, BHE, CLKOUT, RSTIN,RSTOUT, CSX)	V _{OL}	CC	-	0.4	V	I _{OL} = 4 mA
Output low voltage (all other outputs)	V _{OL1}	CC	- 50	0.4	٧	I _{OL1} = 2 mA
Output high voltage ALE, RD, WR, BHE, CLKOUT, RSTIN,RSTOUT, CSX)	V _{OH}	CC	2.4	_	V	I _{OH} = -4 mA
Output high voltage ¹⁾ (all other outputs)	V _{OH1}	CC	2.4	_	V	I _{OH} = - 2mA
Input leakage current (3T pins)	I _{OZ}	CC	_	±10	μΑ	0 V <v<sub>IN<v<sub>DD</v<sub></v<sub>
Input leakage current (5T, 5S pins)	I _{OZ1}	CC	-	±10 ±100 ⁷⁾	μΑ μΑ	$0 \text{ V} < \text{V}_{\text{IN}} < \text{V}_{\text{DD}} < \text{V}_{\text{DD}} < \text{V}_{\text{IN}} < 5.0 \text{V}^{7)}$
RSTIN pull-up resistor 2)	R _{RST}	CC	20	300	kΩ	V _{IN} = 0 V
Read/Write pullup current ³⁾	I _{RWH} 4)		_	-40	μΑ	V _{OUT} = 2.4 V
Read/Write pullup current ³	I _{RWL} ⁵⁾		-500	_	μΑ	V _{OUT} = 0.4 V
ALE pulldown current ³	I _{ALEL} ⁴		40	_	μΑ	V _{OUT} = 0.4 V
ALE pulldown current ³	I _{ALEH} 5		_	500	μΑ	V _{OUT} = 2.4 V
Port 6 (CS) pullup current ³	I _{P6H} ⁴		_	-40	μΑ	V _{OUT} = 2.4 V
Port 6 (CS) pullup current ³	I _{P6L} ⁵		-500	_	μΑ	V _{OUT} = 0.4 V

Table 11 DC characteristics

Parameter	Symbol	Limit Value	Limit Values		Test Condition
i arameter	Symbol	min.	max.	Unit	rest condition
PORT0 configuration current ³	I _{POH} ⁴	_	-4	μΑ	$V_{IN} = V_{IHmin}$
	I _{POL} ⁵	-50	_	μΑ	$V_{IN} = V_{ILmax}$
RPD pulldown current ²	I _{RPD} ⁵	100	500	μΑ	$V_{OUT} = V_{DD}$
XTAL1 input current	I _{IL} CC	_	±20	μΑ	$0 \ V < V_{IN} < V_{DD}$
Pin capacitance ⁶⁾ (digital inputs/outputs)	C _{IO} CC	-	10	pF	f = 1 MHz T _A = 25 ℃
Power supply current	I _{CC}	-	15 + 2.5 * f _{CPU}	mA	f _{CPU} in [MHz] ⁷⁾⁾
Idle mode supply current	I _{ID}	-	10 + 0.9 * f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}} \text{ in [MHz]}^{7}$
Power-down mode supply current	I _{PD} ⁸	-10 ^S	200	μΑ	V _{DD} = 3.6 V ⁹

Table 11 DC characteristics

- 1) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the resulting voltage comes from the external circuitry.
- 2) This specification is only valid during reset, or interruptible power-down mode, after reception of an external interrupt signal that will wake up the CPU.
- 3) This specification is only valid during reset, hold or adapt-mode. Port 6 pins are only affected if they are used for $\overline{\text{CS}}$ output and the open drain function is not enabled.
- 4) The maximum current may be drawn while the signal line remains inactive.
- 5) The minimum current must be drawn in order to drive the signal line active.
- 6) Not 100% tested, guaranteed by design characterization.
- 7) Supply current is a function of operating frequency as illustrated in Figure 7 on page 35. This parameter is tested at V_{DD}max and 50 MHz CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH} with an infinite execution of NOP instruction fetched from external memory (16-bit demux bus mode, no waitstates, no memory tri-state waitstates, normal ALE).
- 8) Typical value at 25° C = 20μ A.
- 9) This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} 0.1 V to V_{DD}, V_{REF} = 0 V, all outputs (including pins configured as outputs) disconnected.

Figure 7 Supply/idle current vs operating frequency

15.3 AC Characteristics

Test conditions

- Input pulse levels:
 0 to +3.0 V
- Input timing reference levels: +1.5 V
- Output timing reference levels: +1.5 V
- Output load:seeFigure 9

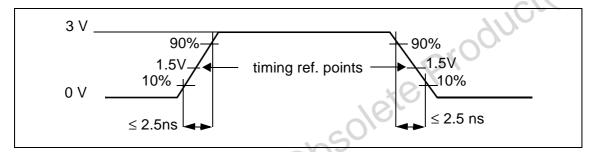


Figure 8 Input waveforms

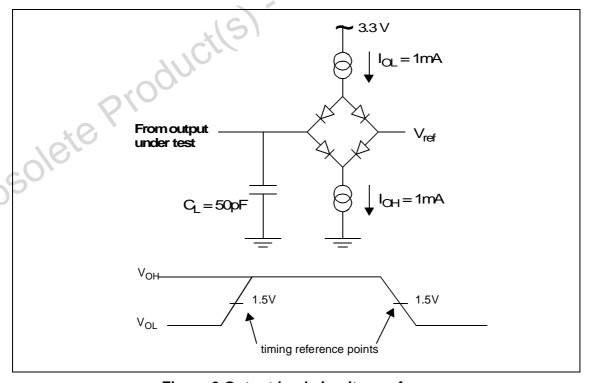


Figure 9 Output load circuit waveform

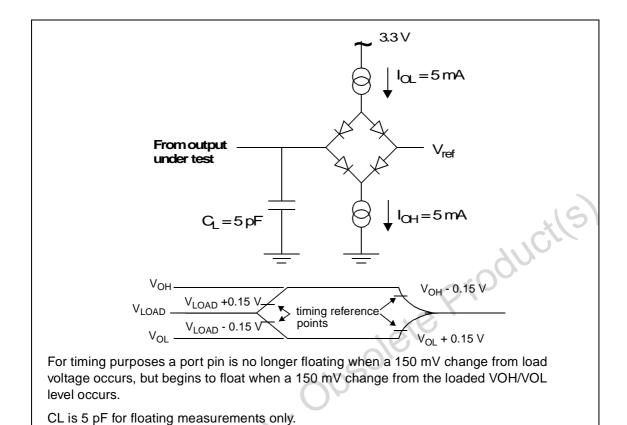


Figure 10 Float waveforms

15.3.1 Cpu Clock Generation Mechanisms

ST10R172L internal operation is controlled by the CPU clock f_{CPU} . Both edges of the CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus cycles) operations. The external timing (AC Characteristics) specification therefore depends on the time between two consecutive edges of the CPU clock, called "TCL" (see figure below).

The CPU clock signal can be generated by different mechanisms. The duration of TCLs and their variation (and also the external timing) depends on the f_{CPU} generation mechanism. This must be considered when calculating ST10R172L timing.

The CPU clock generation mechanism is set during reset by the logic levels on pins P0.15-13 (P0H.7-5).

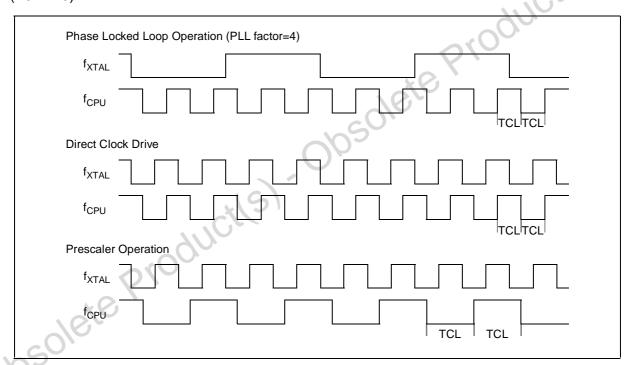


Figure 11 CPU clock generation mechanisms

P0.1	5-13 (P0H	.7-5)	CPU frequency f _{CPU} = f _{XTAL} * F	External clock input range 10- 50MHz	Notes
1	1	1	F _{XTAL} * 4	2.5 to 12.5 MHz	Default configuration
1	1	0	F _{XTAL} * 3	3.33 to 16.66 MHz	
1	0	1	F _{XTAL} * 2	5 to 25 MHz	

Table 12 CPU clock generation mechanisms

P0.1	5-13 (P0H	l.7-5)	CPU frequency f _{CPU} = f _{XTAL} * F	External clock input range 10- 50MHz	Notes
1	0	0	F _{XTAL} * 5	2 to 10 MHz	
0	1	1	F _{XTAL} * 1	1 to 50 MHz	Direct drive ¹⁾
0	1	0	F _{XTAL} * 1.5	6.66 to 33.33 MHz	
0	0	1	F _{XTAL} / 2	2 to 100 MHz	CPU clock via 2:1 prescaler
0	0	0	F _{XTAL} * 2.5	4 to 20 MHz	.(5)

Table 12 CPU clock generation mechanisms

Prescaler operation

Set when pins P0.15-13 (P0H.7-5) equal '001' during reset, the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{XTAL} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{XTAL} .

The timings listed in the AC characteristics that refer to TCLs therefore can be calculated using the period of f_{XTAL} for any TCL.

Note that if the bit OWDDIS in SYSCON register is cleared, the PLL runs on its free-running frequency and delivers the clock signal for the Oscillator Watchdog. If bit OWDDIS is set, then the PLL is switched off.

Direct drive

When pins P0.15-13 (P0H.7-5) equal '011' during reset, the on-chip phase locked loop is disabled and the CPU clock is driven from the internal oscillator with the input clock signal. The frequency of f_{CPU} directly follows the frequency of f_{XTAL} so the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock f_{XTAL} .

The TCL timing below must be calculated using the minimum possible TCL which can be calculated by the formula: $TCL_{min} = 1/f_{XTAL} \times DC_{min}(DC = \text{duty cycle})$

For two consecutive TCLs the deviation caused by the duty cycle of f_{XTAL} is compensated so the duration of 2TCL is always $1/f_{XTAL}$. Therefore, the minimum value TCL_{min} has to be used only once for timings that require an odd number of TCLs (1,3,...). Timings that require an even number of TCLs (2,4,...) may use the formula: $2TCL = 1/f_{XTAL}$.

<u>57</u>

¹⁾ The maximum depends on the duty cycle of the external clock signal. The maximum input frequency is 25 MHz when using an external crystal oscillator, but higher frequencies can be applied with an external clock source.

Note The address float timings in Multiplexed bus mode (t_{11} and t_{45}) use $TCL_{max} = 1/f_{XTAL} \times DC_{max}$ instead of TCL_{min} .

Note that if the bit OWDDIS in SYSCON register is cleared, the PLL runs on its free-running frequency and delivers the clock signal for the Oscillator Watchdog. If bit OWDDIS is set, then the PLL is switched off.

Oscillator Watchdog (OWD)

When the clock option selected is direct drive or direct drive with prescaler, in order to provide a fail safe mechanism in case of a loss of the external clock, an oscillator watchdog is implemented as an additional functionality of the PLL circuitry. This oscillator watchdog operates as follows:

After a reset, the Oscillator Watchdog is enabled by default. To disable the OWD, set bit 4 of SYSCON register OWDDIS.

When the OWD is enabled, the PLL runs on its free-running frequency and increments the Oscillator Watchdog counter. On each transition of the XTAL1 pin, the Oscillator Watchdog is cleared. If an external clock failure occurs, then the Oscillator Watchdog counter overflows (after 16 PLL clock cycles). The CPU clock signal will be switched to the PLL free-running clock signal, and the Oscillator Watchdog Interrupt Request (XP3INT) is flagged. The CPU clock will not switch back to the external clock even if a valid external clock exits on XTAL1 pin. Only a hardware reset can switch the CPU clock source back to direct clock input.

When the OWD is disabled, the CPU clock is always fed from the oscillator input and the PLL is switched off to decrease power supply current.

Phase locked loop

For all other combinations of pins P0.15-13 (P0H.7-5) during reset the on-chip phase locked loop is enabled and provides the CPU clock. The PLL multiplies the input frequency by the factor F which is selected via the combination of pins P0.15-13 (i.e. $f_{CPU} = f_{XTAL} * F$). With every F'th transition of f_{XTAL} the PLL circuit synchronizes the CPU clock to the input clock. In this way, f_{CPU} is constantly adjusted so it is locked to f_{XTAL} . The slight variation causes a jitter of f_{CPU} which affects individual TCL duration. Therefore, AC characteristics that refer to TCLs must be calculated using the minimum possible TCL.

The actual minimum value for TCL depends on the jitter of the PLL. As the PLL constantly adjusts its output frequency, it corresponds to the applied input frequency (crystal or oscillator). The relative deviation for periods of more than one TCL is lower than for one single TCL. For a period of N * TCL the minimum value is computed using the corresponding deviation D_{N} :

$$TCL_{min} = TCL_{NOM} \times (1 - |D_N|/100)$$

 $D_N = \pm (4 - N/15)[\%]$

where N = N = number of consecutive TCLs and $1 \le N \le 40$. So for a period of 3 TCLs (i.e. N = 3):

$$D_3 = 4 - 3/15$$

= 3.8%

and

$$3TCL_{min} = 3TCL_{NOM} \times (1 - 3.8/100)$$

= $3TCL_{NOM} \times 0.962(36.07 \text{nsec @fcpu} = 50 \text{MHz})$

PLL jitter is an important factor for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.

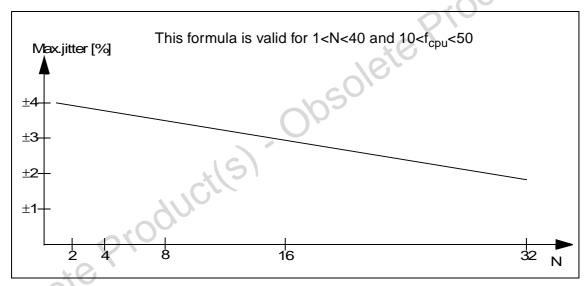


Figure 12 Approximated maximum PLL jitter

15.3.2 Memory Cycle Variables

The timing tables below use three variables derived from the BUSCONx registers and represent programmed memory cycle characteristics. Table 13 describes how these variables are computed.

Description	Symbol	Values								
ALE Extension	t _A	TCL * <alectl></alectl>								
Memory Cycle Time Waitstates	t _C	2TCL * (15 - <mctc>)</mctc>								
Memory Tristate Time	t _F	2TCL * (1 - <mttc>)</mttc>								
Memory Cycle Time Waitstates t _C 2TCL * (15 - <mctc>)</mctc>										

15.3.3 Multiplexed Bus

 $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V} \qquad V_{SS} = 0 \text{ V} \qquad \qquad T_{A} = \text{-}40^{\circ}\text{C to +85 °C} \qquad C_{L} = 50 \text{ pF}$ ALE cycle time = 6 TCL + 2 t_{A} + t_{C} + t_{F} (60 ns at 50-MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU (= 50 MHz	Clock	Variable CPU C 1/2TCL = 1 to 5		
			min.	max.	min.	max.	Unit
ALE high time	t ₅ C	CC	7 + t _A	_	TCL - 3 + t _A	15	ns
Address (P1, P4), BHE setup to ALE	t ₆ C	CC	3 + t _A	_	TCL - 7 + t _A	40'Crr	ns
Address (P0) setup to ALE	t _{6m} C	CC	5 + t _A	_	TCL - 5 + t _A)	ns
Address hold after ALE	t ₇ (CC	5 + t _A	_	TCL - 5 + t _A	_	ns
ALE falling edge to $\overline{\text{RD}}$, $\overline{\text{WR}}$ (with RW-delay)	t ₈ C	CC	5 + t _A	- 60	TCL - 5 + t _A	_	ns
ALE falling edge to \overline{RD} , \overline{WR} (no RW-delay)	t ₉ (CC	-5 + t _A	202	-5 + t _A	_	ns
Address float after \overline{RD} , (with RW-delay) ¹⁾	t ₁₀ C	CC	5)	5 ¹	_	5 ¹	ns
Address float after $\overline{\text{RD}}$, (no RW-delay) ¹	t ₁₁ (cc	_	15 ¹	_	TCL + 5 ¹	ns
RD, WR low time (with RW-delay)	t ₁₂ (CC	13 + t _C	_	2TCL - 7+ t _C	_	ns
RD, WR low time (no RW-delay)	t ₁₃ C	CC	23 + t _C	_	3TCL - 7 + t _C	_	ns
RD to valid data in (with RW-delay)	t ₁₄ S	SR	_	5 + t _C	_	2TCL - 15 + t _C	ns
RD to valid data in (no RW-delay)	t ₁₅ S	SR	_	15 + t _C	_	3TCL - 15 + t _C	ns
ALE low to valid data in	t ₁₆ S	SR	_	15 + t _A + t _C	_	3TCL - 15 + t _A + t _C	ns
Address to valid data in	t ₁₇ S	SR	_	20 + 2t _A + t _C	_	4TCL - 20 + 2t _A + t _C	ns

Table 14 Multiplexed bus

Parameter	Symbol		Max. CPU (= 50 MHz	Clock	Variable CPU Clock 1/2TCL = 1 to 50 MHz			
			min.	max.	min.	max.	Unit	
Data hold after RD rising edge	t ₁₈	SR	0	-	0	_	ns	
Data float after RD rising edge ¹²⁾⁾	t ₁₉	SR	_	15 + t _F ²	_	2TCL - 5 + t _F ²	ns	
Data valid to WR	t ₂₂	СС	13 + t _C	_	2TCL - 7 + t _C	- 19	ns	
Data hold after WR	t ₂₃	СС	13 + t _F	_	2TCL - 7+ t _F	- , cll	ns	
ALE rising edge after $\overline{\text{RD}}$, $\overline{\text{WR}}$	t ₂₅	CC	10 + t _F	_	2TCL - 10 + t _F	90,0	ns	
Address hold after RD, WR	t ₂₇	СС	10 + t _F	_	2TCL - 10 + t _F	_	ns	
Latched CS setup to ALE	t ₃₈	СС	-7 + t _A	3 + t _A	-7 + t _A	3 + t _A	ns	
Unlatched CS setup to ALE	t _{38u}	СС	3 + t _A	1050	TCL - 7 + t _A	-	ns	
Latched CS low to Valid Data In	t ₃₉	SR	5)	13 + t _C + 2t _A	_	3TCL - 17 + t _C + 2t _A	ns	
Unlatched CS low to Valid Data In	t _{39u}	SR		23 + t _C + 2t _A	_	4TCL - 17 + t _C + 2t _A	ns	
Latched CS hold after RD, WR	t ₄₀	CC	20 + t _F	_	3TCL - 10 + t _F	_	ns	
Unlatched \overline{CS} hold after \overline{RD} , \overline{WR}	t _{40u}	CC	10 + t _F	_	2TCL - 10 + t _F	_	ns	
ALE fall. edge to RdCS, WrCS (with RW delay)	t ₄₂	CC	7 + t _A	_	TCL - 3 + t _A	_	ns	
ALE fall. edge to RdCS, WrCS (no RW delay)	t ₄₃	CC	-3 + t _A	_	-3 + t _A	_	ns	
Address float after RdCS (with RW delay) ¹	t ₄₄	CC	_	3 ¹	_	31	ns	
Address float after RdCS (no RW delay) ¹	t ₄₅	CC	_	13 ¹	_	TCL + 3 ¹	ns	

Table 14 Multiplexed bus

Parameter	Symbol		Max. CPU Clock = 50 MHz		Variable CPU Clock 1/2TCL = 1 to 50 MHz		
			min.	max.	min.	max.	Unit
RdCS to Valid Data In (with RW delay)	t ₄₆	SR	_	3 + t _C	_	2TCL - 17 + t _C	ns
RdCS to Valid Data In (no RW delay)	t ₄₇	SR	_	13 + t _C	-	3TCL - 17 + t _C	ns
RdCS, WrCS Low Time (with RW delay)	t ₄₈	CC	13 + t _C	_	2TCL - 7+ t _C	- 4/9	ns
RdCS, WrCS Low Time (no RW delay)	t ₄₉	CC	23 + t _C	_	3TCL - 7+ t _C	900	ns
Data valid to WrCS	t ₅₀	СС	10 + t _C	_	2TCL - 10 + t _C	_	ns
Data hold after RdCS	t ₅₁	SR	0	-	0.0	_	ns
Data float after RdCS ^{1 2}	t ₅₂	SR	_	13 + t _F ²	2	2TCL - 7 + t _F ²	ns
Address hold after RdCS, WrCS	t ₅₄	CC	10 + t _F	300	2TCL - 10 + t _F	_	ns
Data hold after WrCS	t ₅₆	СС	10 + t _F	_	2TCL - 10 + t _F	_	ns

Table 14 Multiplexed bus

¹⁾ Output loading is specified using Figure 10 (CL = 5 pF).

²⁾ This delay assumes that the following bus cycle is a multiplexed bus cycle. If next bus cycle is demultiplexed, refer to demuxultiplexed equivalent AC timing.

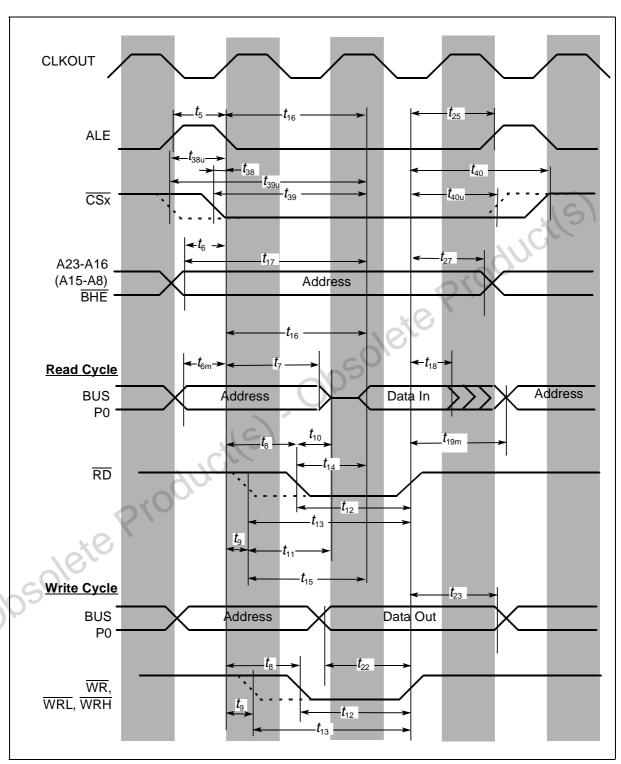


Figure 13 External memory cycle: multiplexed bus, with/without read/write delay, normal ALE

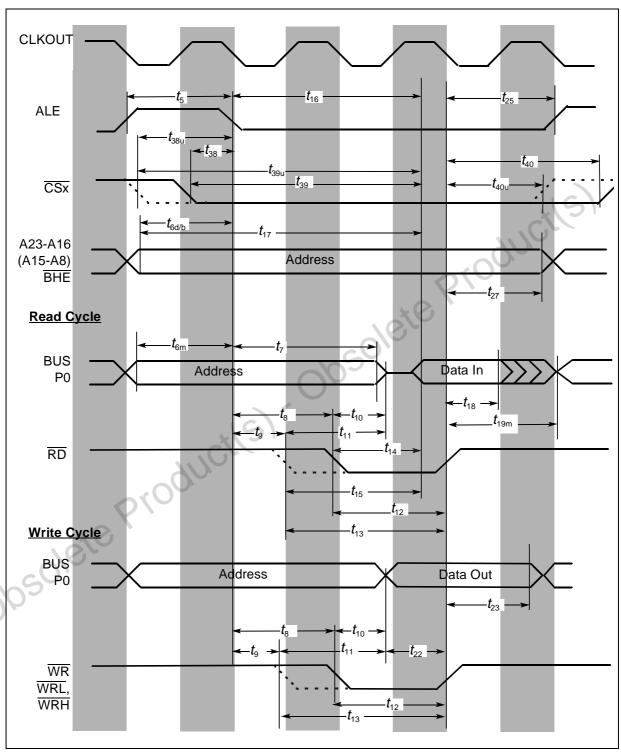


Figure 14 External memory cycle: multiplexed bus, with/without read/write delay, extended ALE

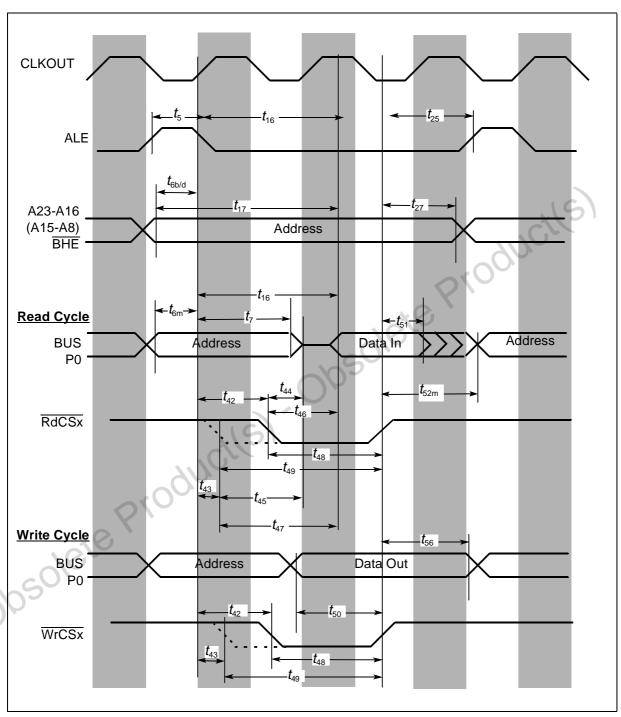


Figure 15 External memory cycle: multiplexed bus, with/without read/write delay, normal ALE, read/write chip select

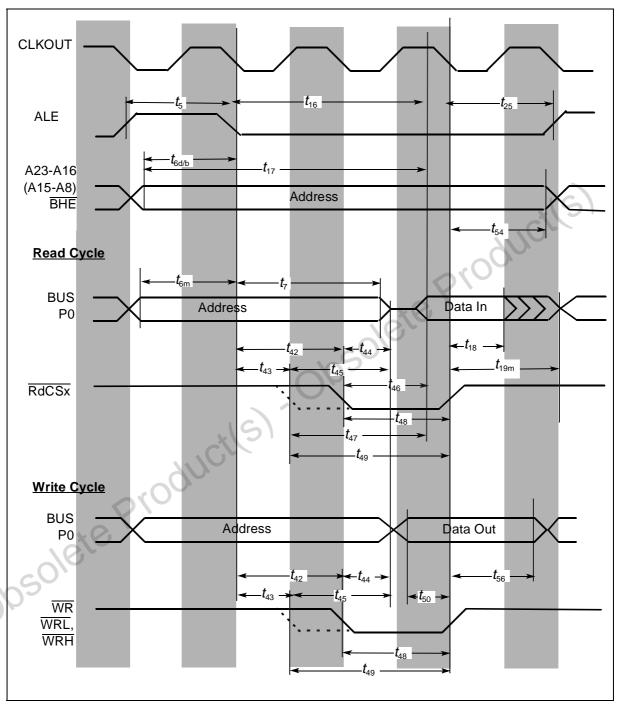


Figure 16 External memory cycle: multiplexed bus, with/without read/write delay, extended ale, read/write chip select

15.3.4 Demultiplexed Bus

 $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $V_{SS} = 0 \text{ V}$

 $T_A = -40$ °C to +85 °C $C_L = 50$ pF

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (40 ns at 50 MHz CPU clock without waitstates)

Parameter	Symbol		Max CPU C	Clock 50MHz	Variable CPU Clock 1/2TCL = 1 to 50 MHz		
			min.	max.	min.	max.	Unit
ALE high time	t ₅	CC	7 + t _A	_	TCL - 3 + t _A	- 115	ns
Address (P1, P4), BHE setup to ALE	t ₆	СС	3 + t _A	_	TCL - 7 + t _A	401CIL	ns
Address setup to RD, WR (with RW-delay)	t ₈₀	CC	13 + 2t _A	_	2TCL - 7 + 2t _A	_	ns
Address setup to \overline{RD} , \overline{WR} (no RW-delay)	t ₈₁	СС	3 + 2t _A	- 16	TCL - 7 + 2t _A	_	ns
RD, WR low time (with RW-delay)	t ₁₂	CC	13 + t _C	10SO.	2TCL - 7 + t _C	_	ns
RD, WR low time (no RW-delay)	t ₁₃	СС	23 + t _C	_	3TCL - 7 + t _C	_	ns
RD to valid data in (with RW-delay)	t ₁₄	SR	2	5 + t _C	_	2TCL - 15 + t _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	15 + t _C	_	3TCL - 15 + t _C	ns
ALE low to valid data in	t ₁₆	SR	_	15 + t _A + t _C	_	3TCL - 15 + t _A + t _C	ns
Address to valid data in	t ₁₇	SR	_	20 + 2t _A + t _C	_	4TCL - 20 + 2t _A + t _C	ns
Data hold after RD rising edge	t ₁₈	SR	0	_	0	_	ns
Data float after RD rising	t ₂₀	SR	_	15	_	2TCL - 5	ns
edge (with RW-delay) ^{1) 2)}				$+ t_F + 2t_A^2$		$+ t_F + 2t_A^2$	
Data float after RD rising edge (no RW-delay) ^{1 2}	t ₂₁	SR	_	5 + t _F + 2t _A ²	_	TCL - 5 + t _F + 2t _A ²	ns
Data valid to WR	t ₂₂	СС	13 + t _C	_	2TCL - 7 + t _C	_	ns

Table 15 Demultiplexed bus

Parameter	Sym	bol	Max CPU C	lock 50MHz	Variable CPU (
			min.	max.	min.	max.	Unit
Data hold after WR	t ₂₄	СС	5 + t _F	-	TCL - 5 + t _F	-	ns
ALE rising edge after RD,	t ₂₆	CC	-5 + t _F	-	-5 + t _F	_	ns
Address hold after RD, WR	t ₂₈	CC	0 (no t _{F)} -9+t _F (t _{F>0)}	_	0 (no t _F) -9+ t _F (t _{F>0)}	-	ns
Address hold after WRH	t _{28h}	CC	-1 (no t _{F)} -8 +t _F (t _{F>0)}	_	-1 (no t _F) -8 + t _F (t _{F>0)}	-UCITY	ns
Latched CS setup to ALE	t ₃₈	СС	-7 + t _A	3 + t _A	-7 + t _A	3 + t _A	ns
Unlatched CS setup to ALE	t _{38u}	СС	3 + t _A	-	TCL - 7 + t _A	_	ns
Latched CS low to Valid Data In	t ₃₉	SR	_	13 + t _C + 2t _A	1	3TCL - 17 + t _C + 2t _A	ns
Unlatched CS low to Valid Data In	t _{39u}	SR	- , C	23 + t _C + 2t _A	_	4TCL - 17 + t _C + 2t _A	ns
Latched $\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}$	t ₄₁	CC	3 + t _F	-	TCL - 7 + t _F	_	ns
Unlatched CS hold after RD, WR	t _{41u}	СС	0 (no t_F) -7 + t_F ($t_{F>0}$)	_	0 (no t _F) -7 + t _F (t _{F>0)}	_	ns
Address setup to RdCs, WrCs (with RW-delay)	t ₈₂	CC	13 + 2t _A	_	2TCL - 7 + 2t _A	_	ns
Address setup to RdCs, WrCs (no RW-delay)	t ₈₃	CC	3 + 2t _A	_	TCL - 7 + 2t _A	_	ns
RdCS to Valid Data In (with RW-delay)	t ₄₆	SR	_	3 + t _C	_	2TCL - 17 + t _C	ns
RdCS to Valid Data In (no RW-delay)	t ₄₇	SR	_	13 + t _C	_	3TCL - 17 + t _C	ns
RdCS, WrCS Low Time (with RW-delay)	t ₄₈	CC	11 + t _C	_	2TCL - 9 + t _C	_	ns
RdCS, WrCS Low Time (no RW-delay)	t ₄₉	CC	21 + t _C	-	3TCL - 9 + t _C	_	ns
Data valid to WrCS	t ₅₀	СС	13 + t _C	_	2TCL - 7 + t _C	_	ns

Table 15 Demultiplexed bus

Parameter	Sym	ıbol	Max CPU C	Clock 50MHz	Variable CPU Clock 1/2TCL = 1 to 50 MHz		
			min.	max.	min.	max.	Unit
Data hold after RdCS	t ₅₁	SR	0	_	0	-	ns
Data float after RdCS (with RW-delay) ^{1 2}	t ₅₃	SR	_	13 + t _{F +} 2tA ²	_	2TCL - 7 + t _{F + 2tA} ²	ns
Data float after RdCS (no RW-delay) ^{1 2}	t ₆₈	SR	_	$3 + t_{F+2tA}^2$	_	TCL - 7 + t _{F + 2tA} ²	ns
Address hold after RdCS, WrCS	t ₅₅	CC	-5 + t _F	_	-5 + t _F	2000	ns
Data hold after WrCS	t ₅₇	CC	3 + t _F	_	TCL - 7 + t _F	_	ns

Table 15 Demultiplexed bus

- 1) Output loading is specified using Figure 10 with CL = 5 pF.
- 2) This delay assumes that the following bus cycle is a demultiplexed bus cycle and that the data bus will only be driven externally when the RD or RdCs signal becomes active. RW-delay and t_A refer to the following bus cycle. If the following bus cycle is a muxtiplexed bus cycle, refer to equivalent multiplexed AC timing (which are still applicable due to automatic insertion an idle state (2TCL) when switching from Demultiplexed to Multiplexed Bus Mode.

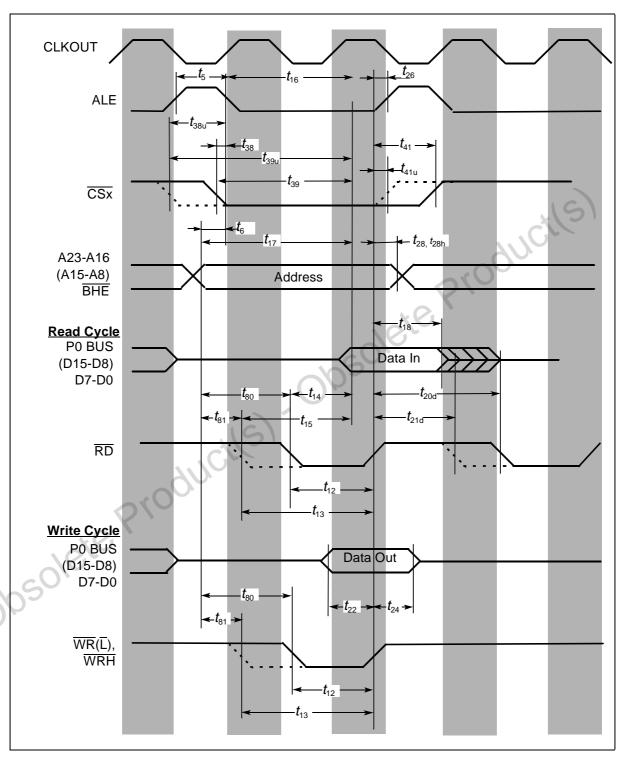


Figure 17 External memory cycle: demultiplexed bus, with/without read/write delay, normal ALE

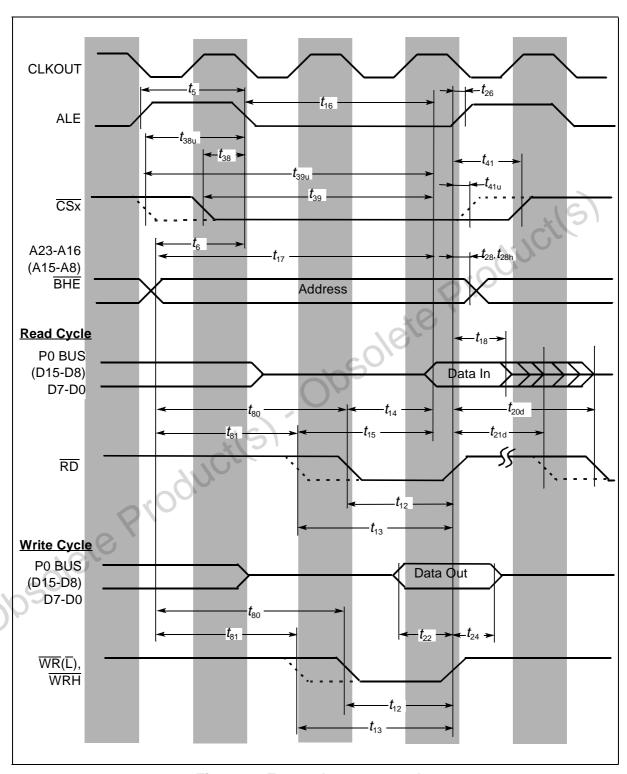


Figure 18 External memory cycle: demultiplexed bus, with/without read/write delay, extended ALE

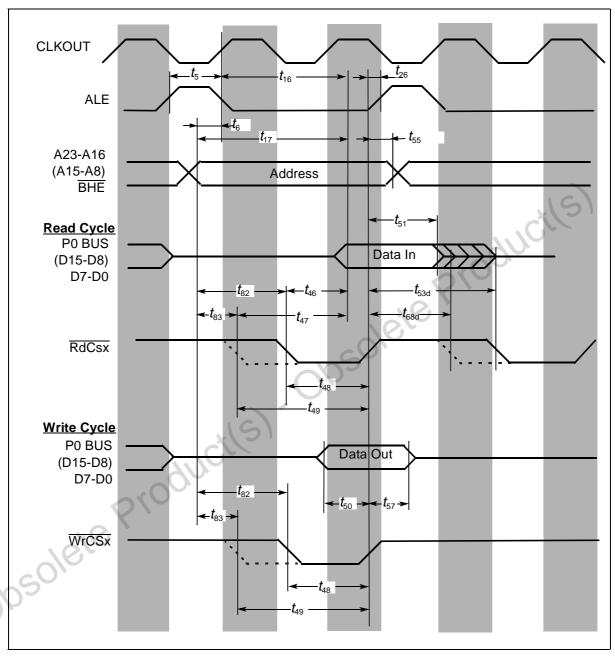


Figure 19 External memory cycle: demultiplexed bus, with/without read/write delay, normal ALE, read/write chip select

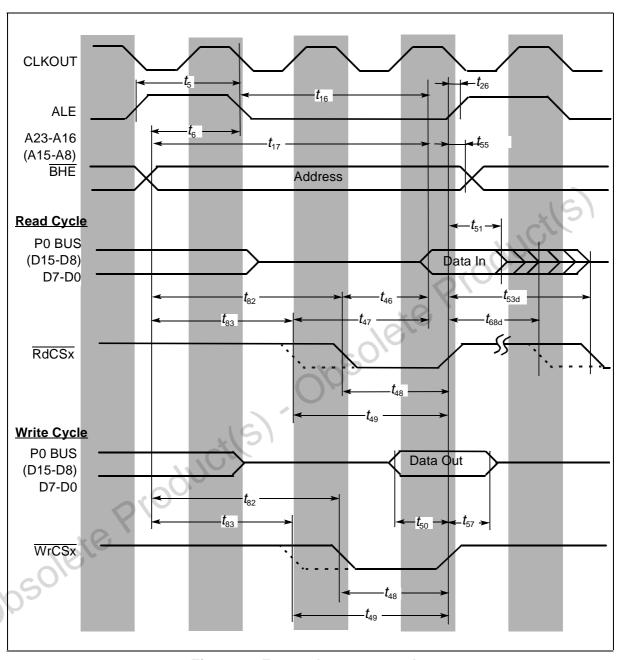


Figure 20 External memory cycle: demultiplexed bus, no read/write delay, extended ALE, read/write chip select

15.3.5 CLKOUT and READY/READY

$$V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$$
 $V_{SS} = 0 \text{ V}$ $T_A = -40^{\circ}\text{C to} +85^{\circ}\text{C}$ $C_L = 50 \text{ pF}$

Parameter	Symbo	- 50 1	CPU Clock MHz		Variable CPU Clock 1/2TCL = 1 to 50 MHz		
		min.	max.		min.	max.	Unit
CLKOUT cycle time	t ₂₉ C	C 20	20		2TCL	2TCL	ns
CLKOUT high time	t ₃₀ C	C 5	-		TCL – 5	- ,(5	ns
CLKOUT low time	t ₃₁ C	C 5	_		TCL – 5	AMCIL	ns
CLKOUT rise time ¹⁾	t ₃₂ C	C -	3 ¹		- ~(0	3 ¹	ns
CLKOUT fall time ¹	t ₃₃ C	C -	31		-6.	3 ¹	ns
CLKOUT rising edge to ALE falling edge	t ₃₄ C	C -3 + t	5 + t _A	-0/e	-3 + t _A	5 + t _A	ns
Synchronous READY setup time to CLKOUT	t ₃₅ S	₹ 9	0,0	5	9	_	ns
Synchronous READY hold time after CLKOUT	t ₃₆ S	3 0	_		0	_	ns
Asynchronous READY low time	t ₃₇ S	₹ 27	_	:	2TCL + 7	_	ns
Asynchronous READY setup time ²⁾	t ₅₈ S	₹ 9	-	!	9	_	ns
Asynchronous READY hold time ²	t ₅₉ S	₹ 0	_		0	_	ns
Async. READY hold time after RD, WR high (Demultiplexed Bus) ³⁾²	t ₆₀ S	₹ 0	0 + 2t _A -	+ t _c + t _F ³	0	TCL - 10 + 2t _A + t _c + t _F ³	ns

Table 16 CLKOUT and READY/READY

¹⁾ Measured between 0.3 and 2.7 volts

²⁾ These timings assure recognition at a specific clock edge for test purposes only.

Demultiplexed bus is the worst case. For multiplexed bus, 2TCL should be added to the maximum values. This adds even more time for deactivating READY.
 2t_A and t_C refer to the following bus cycle, t_F refers to the current bus cycle.

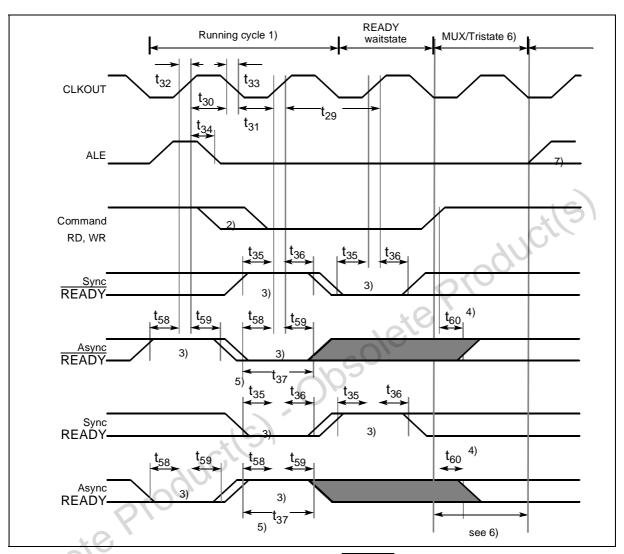


Figure 21 CLKOUT and READY/READY

- 1 Cycle as programmed, including MCTC waitstates (Example shows 0 MCTC WS).
- 2 The leading edge of the respective command depends on RW-delay.
- 3 READY (or READY) sampled HIGH (resp. LOW) at this sampling point generates a READY controlled waitstate, READY (resp. READY) sampled LOW (resp. HIGH) at this sampling point terminates the currently running bus cycle.
- 4 READY (resp. READY) may be deactivated in response to the trailing (rising) edge of the corresponding command (RD or WR).
- If the Asynchronous READY (or READY) signal does not fulfill the indicated setup and hold times with respect to CLKOUT (e.g. because CLKOUT is not enabled), it must fulfill t 37 in order to be safely synchronized. This is guaranteed, if READY is removed in response to the command (see Note 4)).

6 Multiplexed bus modes have a MUX waitstate added after a bus cycle, and an additional MTTC waitstate may be inserted here. For a multiplexed bus with MTTC waitstate this delay is 2 CLKOUT cycles, for a demultiplexed bus without MTTC waitstate this delay is zero.

7 The next external bus cycle may start here.

Obsolete Product(s). Obsolete Product(s)

15.3.6 External Bus Arbitration

 $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V} \qquad \qquad V_{SS} = 0 \text{ V} \qquad \qquad T_{A} = \text{-}40^{\circ}\text{C to +85 °C} \qquad C_{L} = 50 \text{ pF}$

Parameter	Symbol	Max. CPU Clock = 50 MHz		Variable CPU Clock 1/2TCL = 1 to 50 MHz		
		min.	max.	min.	max.	Unit
HOLD input setup time to CLKOUT	t ₆₁ SR	15	-	15	- ,(6	ns
CLKOUT to HLDA high or BREQ low delay	t ₆₂ CC	_	10	-	10	ns
CLKOUT to HLDA low or BREQ high delay	t ₆₃ CC	_	10	- bio	10	ns
CSx release	t ₆₄ CC	_	15	D	15	ns
CSx drive	t ₆₅ CC	-3	15	-3	15	ns
Other signals release	t ₆₆ CC	- 0	15	_	15	ns
Other signals drive	t ₆₇ CC	-3	15	-3	15	ns

Table 17 External bus arbitration

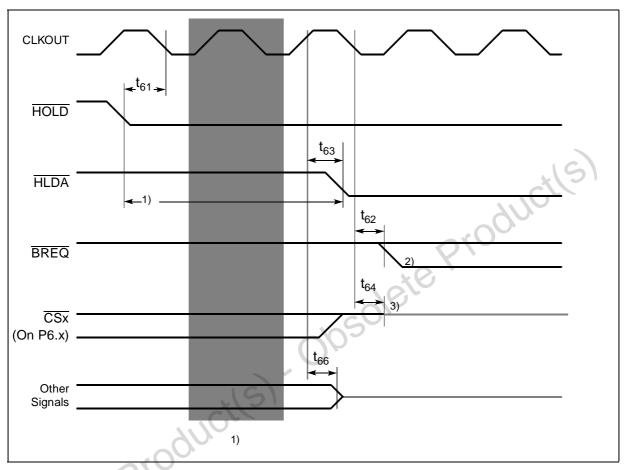


Figure 22 External bus arbitration, releasing the bus

- 1 The ST10R172L will complete the running bus cycle before granting bus access.
- 2 This is the first opportunity for $\overline{\mathsf{BREQ}}$ to become active.
- 3 The $\overline{\text{CS}}$ outputs will be resistive high (pullup) after t_{64} .

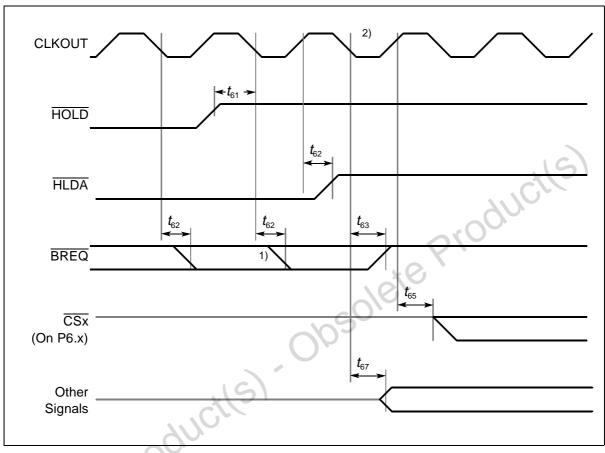


Figure 23 External bus arbitration, (regaining the bus)

- 1 This is the last chance for BREQ to trigger the regain-sequence indicated.

 Even if BREQ is activated earlier, the regain-sequence is initiated by HOLD going high.

 Please note that HOLD may also be de-activated without the ST10R172L requesting the bus.
- The next ST10R172L driven bus cycle may start here.

15.3.7 External Hardware Reset

$$V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V} \qquad \qquad V_{SS} = 0 \text{ V} \qquad \qquad T_{A} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C} \quad C_{L} = 50 \text{ pF}$$

Parameter	Symbol		Max. CPU (= 50 MHz	Clock	Variable CPU Clock 1/2TCL = 1 to 50 MHz		
			min.	max.	min.	max.	Unit
Sync. RSTIN low time ¹⁾	t ₇₀	SR	50	_	4 TCL + 10	-	ns
RSTIN low to internal reset sequence start	t ₇₁	CC	4	16	4	16	TCL
internal reset sequence, (RSTIN internally pulled low)	t ₇₂	CC	1024	1024	1024	1024	TCL
RSTIN rising edge to internal reset condition end	t ₇₃	CC	4	6	4	6	TCL
PORT0 system start-up configuration setup to RSTIN rising edge ²⁾⁾	t ₇₄	SR	100)050,	100	_	ns
PORT0 system start-up configuration hold after RSTIN rising edge	t ₇₅	SR	5	6	1	6	TCL
Bus signals drive from internal reset end	t ₇₆	СС	0	20	0	20	ns
RSTIN low to signals release	t ₇₇	СС	_	50	_	50	ns
ALE rising edge from inter- nal reset condition end	t ₇₈	CC	8	8	8	8	TCL
Async. RSTIN low time ¹	t ₇₉	SR	1500	_	1500	_	ns

Table 18 External hardware reset

¹⁾ On power-up reset, the $\overline{\text{RSTIN}}$ pin must be asserted until a stable clock signal is available (about 10...50 ms to allow the on-chip oscillator to stabilize) and until System Start-up Configuration is correct on PORT0 (about 50 μs for internal pullup devices to load 50 pF from V_{IL} min to V_{IH} min).

²⁾ The value of bits 0 (EMU), 1 (ADAPT), 13 to 15 (Clock Configuration) are loaded during hardware reset as long as internal reset signal is active, and have an immediate effect on the system.



Figure 24 External asynchronous hardware reset (power-up reset): Vpp low

- 1 The ST10R172L is reset in its default state asynchronously with RSTIN. The internal RAM content may be altered if an internal write access is in progress.
- 2 On power-up, $\overline{\text{RSTIN}}$ must be asserted t_{79} after a stabilized CPU clock signal is available.
- Internal pullup devices are active on the PORT0 lines, so input level is high if the respective pin is left open or is low if the respective pin is connected to an external pulldown device.
- 4 The ST10R172L starts execution here at address 00'0000h.
- 5 RSTOUT stays active until execution of the EINIT (end of initialization) instruction.
- 6 Activation of the IO pins is controlled by software

.

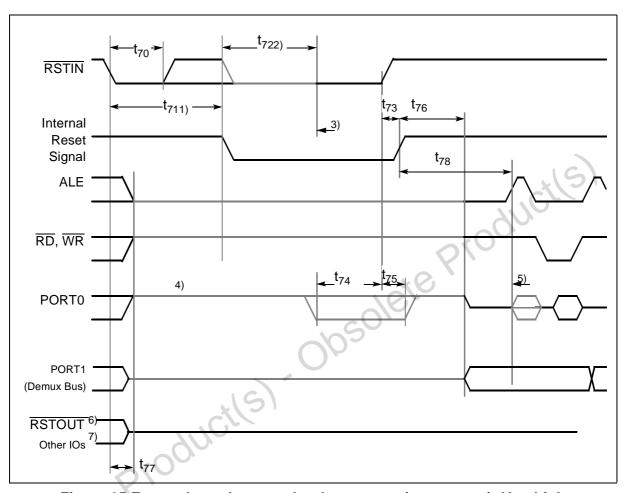


Figure 25 External synchronous hardware reset (warm reset): Vpp high

- 1 The pending internal hold states are cancelled and the current internal access cycle (if any) is completed.
- 2 RSTIN pulled low by internal device during internal reset sequence.
- 3 The reset condition may ends here if \overline{RSTIN} pin is sampled high after t_{72} .
- 4 Internal pullup devices are active on the PORT0 lines. Their input level is high if the respective pin is left open, or is low if the respective pin is connected to an external pull-down device by resistive high (pullup) after t₆₄.
- 5 The ST10R172L starts execution here at address 00'0000h.
- 6 RSTOUT stays active until execution of the EINIT (End of Initialization) instruction.
- 7 Activation of the IO pins is controlled by software.

15.3.8 Synchronous Serial Port Timing

$$V_{\text{CC}} = 3.3 \text{ V} \pm 0.3 \text{ V} \qquad V_{\text{SS}} = 0 \text{ V} \qquad \qquad T_{\text{A}} = \text{-40}^{\circ}\text{C to +85 }^{\circ}\text{C} \qquad C_{\text{L}} = 50 \text{ pF}$$

Parameter		nbol	Max. Baudrate = 25 MBd		Variable Baudrate = 0.2 to 25 MBd		Unit
			min.	max.	min.	max.	-
SSP clock cycle time	t ₂₀₀	CC	40	40	4 TCL	512 TCL	r
SSP clock high time	t ₂₀₁	CC	13	-	t ₂₀₀ /2 - 7	- (r
SSP clock low time	t ₂₀₂	СС	13	-	t ₂₀₀ /2 - 7	CH C	ı
SSP clock rise time	t ₂₀₃	СС	-	3	- 41	3	ı
SSP clock fall time	t ₂₀₄	CC	_	3	0100	3	ı
CE active before shift edge	t ₂₀₅	CC	13		t ₂₀₀ /2 - 7	_	ı
CE inactive after latch edge	t ₂₀₆	CC	33	47	t ₂₀₀ - 7	t ₂₀₀ + 7	ı
Write data valid after shift edge	t ₂₀₇	CC	- cC	7	_	7	ı
Write data hold after shift edge	t ₂₀₈	CC	0	_	0	_	ı
Write data hold after latch edge	t ₂₀₉	CC	15	25	t ₂₀₀ /2 - 5	t ₂₀₀ /2 + 5	ı
Read data active after latch edge	t ₂₁₀	SR	27	-	t ₂₀₀ /2 + 7	_	ı
Read data setup time before latch edge	t ₂₁₁	SR	15	-	15	_	ı
Read data hold time after latch edge	t ₂₁₂	SR	0	_	0	_	ı

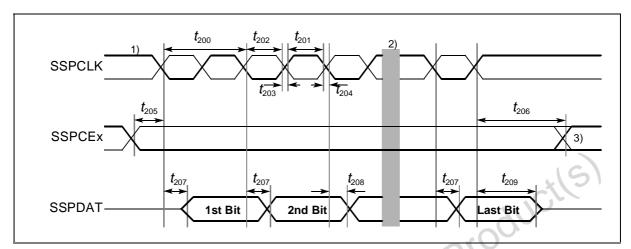


Figure 26 SSP write timing

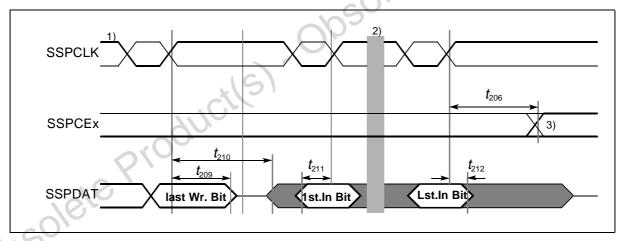


Figure 27 SSP read timing

- 1 The transition of shift and latch edge of SSPCLK is programmable. This figure uses the falling edge as shift edge (drawn bold).
- 2 The bit timing is repeated for all bits to be transmitted or received.
- 3 The active level of the chip enable lines is programmable. This figure uses an active low CE (drawn bold). At the end of a transmission or reception the CE signal is disabled in single transfer mode. In continuous transfer mode it remains active.

16 PACKAGE MECHANICAL DATA

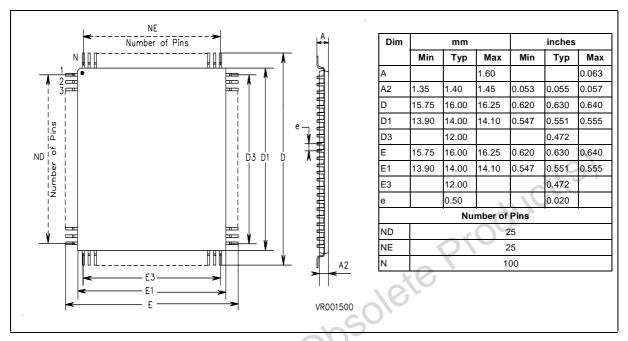


Figure 28 Package outline TQFP100 (14 x 14 mm)

17 ORDERING INFORMATION

Sales type	Temperature range	Package	
ST10R172LT1	0°C to 70°C	TQFP100 (14x 14)	
ST10R172LT6	-40°C to +85 °C	TQ1 F 100 (14X 14)	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

©2001 STMicroelectronics - All Rights Reserved.

Purchase of I^2C Components by STMicroelectronics conveys a license under the Philips I^2C Patent. Rights to use these components in an I^2C system is granted provided that the system conforms to the I^2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 16-bit Microcontrollers - MCU category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

 M30302FCPFP#U3
 MB90F036APMC-GSE1
 MB90F428GCPFR-GSE1
 MB96F683RBPMC-GSAE1
 R5F10MMGDFB#30

 R5F111PGGFB#30
 R5F117BCGNA#20
 DF3026XBL25V
 DF36014GFTV
 DF36024GFTV
 DF36034GFPV

 R5F11B7EANA#U0
 R5F21172DSP#U0
 MB90092PF-G-BNDE1
 MB90F335APMC1-G-SPE1
 MB90F345CAPFR-GSE1
 MB90F568PMCR-GSE1

 GE1
 MB90F882ASPMC-GE1
 MB96F395RSAPMC-GSE2
 DF36024GFXV
 UPD78F1018F1-BA4-A
 MB96F018RBPMC-GSE1

 MB90F867ASPFR-GE1
 DF2239FA20IV
 R5F117BCGFP#30
 LC88F58B0AU-SQFPH
 MB90F548GPF-GE1
 MB90214PF-GT-310-BND-AE1

 MB90F342CESPQC-GSE2
 MB90F428GAPF-GSE1
 ML620Q504H-NNNTBWBX
 S912ZVH128F2VLL
 UPD78F1500AGK-GAK-AX

 HD64F3337SF16V
 MB90F428GCPF-GSE1
 MB90F342ESPMC-G-JNE1
 MB90022PF-GS-358E1
 MB96F395RWAPMC-GSE2

 MB96395RSAPMC-GS-110E2
 MB90F883CSPMC-GE1
 S912ZVHY64F1CLL
 S912ZVHY64F1VLQ
 ST10F280
 MB96F338RSAPMCR-GK5E2

 GK5E2
 CY90096PF-G-002-BND-ERE1
 ML62Q1569-NNNGAZ0AX
 ML62Q1739-NNNGAZ0AX
 ML62Q1749-NNNGAZ0AX