MUX/DEMUX for 4 differential channel LVDS and DDC

Features

- Low R_{ON} : 4.0Ω typical
- V_{CC} operating range: 3.0 to 3.6 V
- Enhanced ESD protection: $>8 \mathrm{kV}$ (contact) and 15 kV (HBM)
■ Channel on capacitance: 9.5 pF typical
- Switching time speed: 9 ns

■ Near to zero propagation delay: 250 ps
■ Very low crosstalk: -45 dB at 250 MHz
■ Bit-to-bit skew: 200 ps
■ > $600 \mathrm{MHz}-3 \mathrm{~dB}$ typical bandwidth (or data frequency)
■ Support up to 4 differential LVDS channel

- Support 2 channel for DDC
- Independent SEL control for LVDS and DDC channels
- Package: QFN56

Applications

■ Audio/video switching
■ High bandwidth physical layer signals routing

Description

The ST3DV520E is a 4 differential channel LVDS multiplexer/demultiplexer low R_{ON} bidirectional switch used to switch between multiple LVDS sources. It is designed for very low crosstalk, low bit-to-bit skew and low I/O capacitance, to maintain high signal integrity.
The differential signal from the LVDS transceiver is multiplexed into one of two selected outputs while the unselected switch goes to $\mathrm{Hi}-\mathrm{Z}$ status.

The device integrates 2 SPDT (single pole dual throw) switches, for DDC channel.
SEL for LVDS and DDC channel is controlled independently.

Table 1. Device summary

Order code	Package	Packing
ST3DV520EQTR	QFN56	Tape and reel

Contents

1 Pin description 3
2 Maximum rating 6
2.1 Recommended operating conditions 6
3 Electrical characteristics 7
4 Package mechanical data 16
5 Revision history 20

1
 Pin description

Figure 1. Pin connection (top through view)

Table 2. Pin description

Pin	Symbol	Name and function
$2,3,7,8,11,12,14,15$	A, B, C, D, E, F, G, H	8-bit bus
$48,47,43,42,37,36,32,31$	A0, B0, C0, D0, E0, F0, G0, H0	8-bit multiplexed to bus 0
$46,45,41,40,35,34,30,29$	A1, B1, C1, D1, E1, F1, G1, H1	8-bit multiplexed to bus 1
17	SEL1	LVDS channel selection
54	SEL2	DDC channel selection
19,20	DDC1, DDC2	DDC switch input
$22,23,25,26$	DDC1_0, DDC2_0, DDC1_1,	DDC switch output
$4,10,18,27,38,50,56$	DDC2_1	Supply voltage
$1,6,9,13,16,21,24,28,33$, $39,44,49,53,55$	GND	Ground
$5,51,52$	NC	No internal connection

Figure 2. Input equivalent circuit

Table 3. LVDS switch function table

SEL1	Function
L	8-bit bus to 8-bit multiplexed bus 0
H	8-bit bus to 8-bit multiplexed bus 1

Table 4. DDC switch function table

SEL2	Function
L	DDC switch input connected to DDC switch output X_0
H	DDC switch input connected to DDC switch output X_1

2 Maximum rating

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 5. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage to ground	-0.5 to 4.6	V
$\mathrm{~V}_{\mathrm{IO}}$	DC input output voltage	-0.5 to 4.6	V
$\mathrm{~V}_{\mathrm{IC}}$	DC control input voltage	-0.5 to 4.6	V
I_{O}	DC output current ${ }^{(1)}$	120	mA
P_{D}	Power dissipation	0.5	W
$\mathrm{~T}_{\mathrm{stg}}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

1. If $\mathrm{V}_{\mathrm{IO}} \times \mathrm{I}_{\mathrm{O}}$ does not exceed the maximum limit of P_{D}.

2.1 Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Value			Unit
		Min	Typ	Max	
V_{CC}	Supply voltage to ground	3	-		V
$\mathrm{~V}_{\mathrm{IC}}$	DC control input voltage (SEL1, 2)	0	-	V_{CC}	V
V_{IO}	DC input/output voltage	0	-	V_{CC}	V
T_{A}	Operating temperature	-40	-	85	${ }^{\circ} \mathrm{C}$

3 Electrical characteristics

Table 7. DC electrical characteristics

Symbol	Parameter	Test condition	Value			Unit
			-40 to $85{ }^{\circ} \mathrm{C}$			
			Min	Typ	Max	
V_{IH}	Voltage input high (SEL1, 2)	High level guaranteed	2.4	-	-	V
$\mathrm{V}_{\text {IL }}$	Voltage input low (SEL1, 2)	Low level guaranteed	-0.5	-	0.8	
$\mathrm{V}_{\text {IK }}$	Clamp diode voltage (SEL1, 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA} \end{aligned}$	-	-0.8	-1.2	V
$\mathrm{I}_{\mathbf{H}}$	Input high current (SEL1, 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	-		± 5	$\mu \mathrm{A}$
1 IL	Input low current (SEL1, 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$	2	-	± 5	$\mu \mathrm{A}$
$\mathrm{IOFF}_{(\mathrm{SW})}{ }^{(1)}$	Leakage current through the switch common terminals (A to H) (DDC1 to DDC2)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \\ & \mathrm{~A} \text { to } \mathrm{H}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{DDC} 1 \text { to } \mathrm{DDC} 2=\mathrm{V}_{\mathrm{CC}} \\ & \text { A0 to } \mathrm{H} 0=0 \mathrm{~V} \\ & \text { A1 to } \mathrm{H} 1=\text { floating } \\ & \text { DDCx_0 }=0 \mathrm{~V} \\ & \text { DDCx1 }=\text { floating } \\ & \text { SEL1 }=\mathrm{V}_{\mathrm{CC}}, \text { SEL2 }=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	-	-	± 1	$\mu \mathrm{A}$
$\mathrm{IOFF}_{(\mathrm{SEL} 1)}$	SEL1 pin leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \\ & \mathrm{SEL} 1,2=0 \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	-	± 1	$\mu \mathrm{A}$
R_{ON}	Switch ON resistance ${ }^{(2)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=1.5 \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA} \end{aligned}$	-	4.0	6.5	Ω
$\mathrm{R}_{\text {FLAT }}$	ON resistance flatness (3)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \text { at } 1.5 \text { and } \mathrm{VCC} \\ & \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA} \end{aligned}$	-	0.5	-	Ω
$\Delta \mathrm{R}_{\text {ON }}$	ON resistance match between channel $\underset{(2)(4)}{\Delta \mathrm{R}_{\mathrm{ON}}}=\mathrm{R}_{\mathrm{ONMAX}}-\mathrm{R}_{\mathrm{ONMIN}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=1.5 \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA} \end{aligned}$	-	0.4	1	Ω

1. Refer to Figure 4: Test circuit for leakage current (IOFF) on page 9
2. Measured by voltage drop between channels at indicated current through the switch. ON resistance is determined by the lower of the voltages.
3. Flatness is defined as the difference between the $R_{\text {ONMAX }}$ and $R_{\text {ONMIN }}$ of $O N$ resistance over the specified range.
4. ΔR_{ON} measured at same V_{CC}, temperature and voltage level.

Table 8. Capacitance ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=\mathbf{1 M H z}$)

Symbol	Parameter	Test condition	Value			Unit
			Min	Typ	Max	
$\mathrm{C}_{\text {IN }}$	SEL1, 2 pin input capacitance ${ }^{(1)}$	$\begin{aligned} & \mathrm{DC}=0.25 \mathrm{~V} \\ & A C=0.5 \mathrm{~V} P \mathrm{P} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	2	3	pF
$\mathrm{C}_{\text {OFF }}$	Switch off capacitance ${ }^{(2)}$	$\begin{aligned} & \mathrm{DC}=0.25 \mathrm{~V} \\ & \mathrm{AC}=0.5 \mathrm{~V} \text { PP } \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	4	5	pF
$\mathrm{Con}^{\text {O }}$	Switch on capacitance ${ }^{(3)}$	$\begin{aligned} & \mathrm{DC}=0.25 \mathrm{~V} \\ & \mathrm{AC}=0.5 \mathrm{~V} P \mathrm{P} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	9.5	11	pF

1. Refer to Figure 5 on page 10
2. Refer to Figure 6 on page 10
3. Refer to Figure 7 on page 11

Table 9. Power supply characteristics

Symbol	Parameter	Test condition	Value			Unit
			-40 to $85{ }^{\circ} \mathrm{C}$			
			Min	Typ	Max	
I_{CC}	Active mode powe supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	-	150	500	$\mu \mathrm{A}$

Table 10. Dynamic electrical characteristics ($\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V} \pm 10 \%$)

Symbol	Parameter	Test condition	Value			Unit
			-40 to $85{ }^{\circ} \mathrm{C}$			
			Min	Typ	Max	
$\mathrm{X}_{\text {talk }}$	Crosstalk ${ }^{(1)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{f}=250 \mathrm{MHz} \end{aligned}$	-	-45	-	dB
$\mathrm{O}_{\text {IRR }}$	Off isolation ${ }^{(2)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{f}=250 \mathrm{MHz} \end{aligned}$	-	-37	-	dB
BW	-3 dB bandwidth ${ }^{(3)}$	$\begin{aligned} & \mathrm{R} \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & 0<\mathrm{V}_{\mathrm{IN}} \leq 3.6 \mathrm{~V} \end{aligned}$	-	600	-	MHz

1. Refer to Figure 9 on page 12
2. Refer to Figure 10 on page 13
3. Refer to Figure 8 on page 11

Table 11. Switching characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%\right)$

Symbol	Parameter	Test condition	Value			Unit
			Min	Typ	Max	
$t_{\text {PD }}$	Propagation delay	$\mathrm{V}_{\mathrm{CC}}=3$ to 3.6 V	-	0.25	-	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}}, \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Line enable time, SEL to x to $x 0$ or x to x 1	$\mathrm{V}_{\mathrm{CC}}=3$ to 3.6 V	0.5	6.5	15	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}}, \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Line disable time, SEL to x to xO or x to x 1	$\mathrm{V}_{\mathrm{CC}}=3$ to 3.6 V	0.5	6.5	8.5	ns
${ }^{\text {tsk(0) }}$	Output skew between center port to any other port	$\mathrm{V}_{\mathrm{CC}}=3$ to 3.6 V	-	0.1	0.2	ns
${ }^{\text {tSK(P) }}$	Skew between opposite transition of the same output ($\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\mathrm{PLH}}$)	$\mathrm{V}_{\mathrm{CC}}=3$ to 3.6 V		0.1	0.2	ns

Table 12. ESD performance

Symbol	Test condition	Value			Unit
		Min	Typ	Max	
ESD	Contact discharge ${ }^{(1)}$ IEC61000-4-2	-	± 8	-	kV
	Human body model (MIL-STD-883)	-	± 15	-	kV

1. Refer to Figure 3: Diagram for suggested VDD decoupling on page 9.

Figure 3. Diagram for suggested V_{DD} decoupling

Note: 100 nF Capacitors must be used as local bypass capacitors between the adjacent VDD and GND pairs (total 7)

1. Applicable for system level ESD test

Figure 4. Test circuit for leakage current (loff)

Figure 5. Test circuit for SEL pin input capacitance ($C_{\text {IN }}$)

Figure 6. Test circuit for switch off capacitance (COFF)

Figure 7. Test circuit for switch on capacitance (C_{ON})

Figure 8. Test circuit for bandwidth measurement (BW)

1. C_{L} includes proble and jig capacitance.

Frequency response is measured at the output of the ON channel. For example, when $\mathrm{V}_{\mathrm{SEL} 1}=0$ and A is the input, the output is measured at AO . All unused analog I/O ports are left open.

HP8753ES setup:
Average $=4$
$\mathrm{R}_{\mathrm{BW}}=3 \mathrm{kHz}$
$\mathrm{V}_{\mathrm{BIAS}}=0.35 \mathrm{~V}$
ST $=2 \mathrm{~s}$
$\mathrm{P} 1=0 \mathrm{dBm}$
Figure 9. Test circuit for crosstalk measurement ($\mathrm{x}_{\text {talk }}$)

1. C_{L} includes proble and jig capacitance.
2. A 50Ω termination resistor is needed to match the loading of the network analyzer.

Crosstalk is measured at the output of the non-adjacent ON channel. For example, when $V_{\text {SEL1 }}=0$, and B is the input, the output is measured at D. All unused analog input ports are connected to GND and output ports are left open.

HP8753ES setup:
Average $=4$
$R_{B W}=3 \mathrm{kHz}$
$\mathrm{V}_{\mathrm{BIAS}}=0.35 \mathrm{~V}$
$\mathrm{ST}=2 \mathrm{~s}$
P1 $=0 \mathrm{dBm}$

Figure 10. Test circuit for off isolation measurement ($\mathrm{O}_{\mathrm{IRR}}$)

NOTES: A. C_{L} includes probe and jig capacitance.
B. A $50-\Omega$ termination resistor is needed to match the loading of the network analyzer.

Off isolation is measured at the output of the OFF channel. For example, when $\mathrm{V}_{\mathrm{SEL} 1}=0$, and B is the input, the output is measured at $B 1$. All unused analog input ports are connected to GND and output ports are left open.

HP8753ES setup:
Average $=4$
$\mathrm{R}_{\mathrm{BW}}=3 \mathrm{kHz}$
$\mathrm{V}_{\mathrm{BIAS}}=0.35 \mathrm{~V}$
$\mathrm{ST}=2 \mathrm{~S}$
P1 $=0 \mathrm{dBm}$

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

Figure 11. Package outline for QFN56 (11 x 5 mm) pitch 0.5 mm

Table 13. Mechanical data for QFN56 (11 x 5 mm) pitch 0.5 mm

Symbol	Millimeters		
	Min	Typ	Max
A	0.70	0.75	0.80
A1	-	-	0.05
A3	-	0.20	-
b	0.20	0.25	0.30
D	10.90	11.00	11.10
D2	8.30	8.40	8.50
D3	-	9.50	-
E	4.90	5.00	5.10
E2	2.30	2.40	2.50
E3	-	3.50	-
e	-	0.50	-
L	0.30	0.40	0.50

Figure 12. Footprint recommendation for QFN56 (11 x 5 mm) pitch 0.5 mm

Figure 13. Carrier tape information for QFN56 (11 x 5 mm) pitch 0.5 mm

Figure 14. Reel information for QFN56 (11 x 5 mm) pitch 0.5 mm

5 Revision history

Table 14. Document revision history

Date	Revision	Changes	
08-Dec-2010	1	Initial release.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI5A3157BC6EX PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR

TC4066BP-NF HEF4053BT. 653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7
PI2DBS6212ZHEX MAX4704EUB+T ADG1406BRUZ-REEL7 CD4053BPWRG4 74HC4053D.653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB.112 74HCT4052D. 112

74HCT4052DB. 112 74HCT4053DB. 112 74HCT4067D. 112 74HCT4351D. 112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE
PI5V331QE 5962-8771601EA

