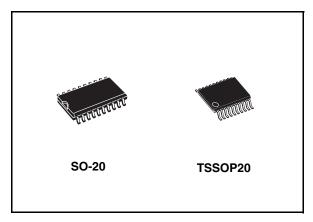


Multiple RS-232 drivers and receivers


Features

- Meets and exceeds the requirements of EIA/TIA-232-E and ITUV.28 standard
- Single chip with easy interface between UART and serial port connector of IBM PC/ATTM and compatibles
- Designed to support data rates up to 120 kbps
- Pinout compatible with ST75C185

Description

The ST75185C contains three drivers and five receivers. The pinout matches the DB9S connector design in order to decrease the part count, reduce the board space required and allow easy interconnection of the UART and serial port connector of IBM PC/AT™ and compatibles. The bipolar circuits and processing of the ST75185C provides a rugged low-cost solution for this function at the expense of quiescent power and external passive components relative to the ST75C185.

The ST75185C complies with the requirements of the EIA/TIA 232-E and ITU (formally CCITT) v.28 standards. These standards are for data interchange between a host computer and peripheral at signalling rates up to 20 k-bits/s. The switching speeds of the ST75185C are fast enough to support rates up to 120 K-bits/s with lower capacitive loads (shorter cables). Interoperability at the higher signalling rates cannot be assured unless the designer has design control of the cable and the interface circuits at the both ends. For inter-operability at signalling rates to

120 k-bits/s, use of EIA/ITA-423-B (ITU v.10) and EIA/ITA-422-B (ITU v.11) standards are recommended.

The ST75185C is characterized for operation over the range of 0°C to 70 °C.

Table 1. Device summary

Order codes	Temperature range	Packages	Packaging
ST75185CTR	0 to 70 °C	TSSOP20 (tape and reel)	2500 parts per reel
ST75185CDR	0 to 70 °C	SO-20 (tape and reel)	1000 parts per reel

Contents ST75185C

Contents

1	Pin configuration3
2	Maximum ratings
3	Electrical characteristics 6
4	Typical application9
5	Typical characteristics
6	Application information: diodes on power supply 15
7	Package mechanical data
В	Revision history

ST75185C Pin configuration

1 Pin configuration

Figure 1. Pin connection IEC logic symbol and logic diagram

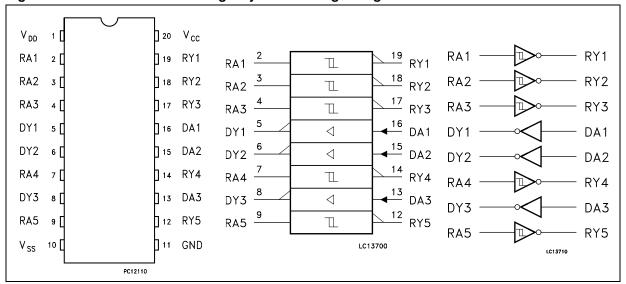


Table 2. Pin description

Pin n°	Symbol	Name and function
1	V _{DD}	Supply voltage (+12 V)
2	RA1	First receiver input
3	RA2	Second receiver input
4	RA3	Third receiver input
5	DY1	First driver output
6	DY2	Second driver output
7	RA4	Fourth receiver input
8	DY3	Third driver output
9	RA5	Fifth receiver input
10	V _{SS}	Supply voltage (-12V)
11	GND	Ground
12	RY5	Fifth receiver output
13	DA3	Third driver input
14	RY4	Fourth receiver output
15	DA2	Second driver input
16	DA1	First driver input
17	RY3	Third receiver output
18	RY2	Second receiver output
19	RY1	First receiver output
20	V _{CC}	Supply voltage (+5 V)

Maximum ratings ST75185C

2 Maximum ratings

Table 3. Absolute maximum ratings over operating free-air temperature range

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage ⁽¹⁾	15	V
V _{SS}	Supply voltage ⁽¹⁾	-15	V
V _{CC}	Supply voltage ⁽¹⁾	10	V
VI	Input voltage range (Driver)	-15 to 7	V
VI	Input voltage range (Receiver)	-30 to 30	V
V _O	Output voltage range (Driver)	-15 to 15	V
I _O	Receiver low level output current	20	mA
P_{D}	Continuous total power dissipation	See dissipation rating table	
T _A	Operating free-air temperature range	0 to 70	°C
T _{STG}	Storage temperature range	-65 to + 150	°C
T_L	Lead temperature 1.6 mm. from case for 10 sec.	260	°C

^{1.} All voltage are with respect to the network ground terminal.

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 4. Dissipation rating table

Package	Power rating at T _A ≤ 25°C	Derating factor above T _A = 25°C	Power rating at $T_A \le 70^{\circ}C$
MICROPACKAGE (D)	1125 mW	9.0 mW/°C	720 mW

Table 5. Thermal data

Symbol	Parameter	TSSOP20	Unit
R _{thJC}	Thermal resistance junction-case	27.22	°C/W
R _{thJA}	Thermal resistance junction-ambient	114.5 ⁽¹⁾	°C/W

^{1.} This value is referred to single-layer PCB, JEDEC standard test board.

ST75185C Maximum ratings

Table 6. Recommended operating conditions

Symbol	Parameter		Min.	Max.	Unit.
V_{DD}	Supply voltage		7.5	15	V
V _{SS}	Supply voltage		-7.5	-15	V
V _{CC}	Supply voltage		4.5	5.5	V
V _I	Driver input voltage		0	V _{CC}	V
1.	Driver			-6	mA
ІОН	High level output current	Receiver Driver Receiver		-0.5	IIIA
la.	Low level output current	Driver		6	mA
l _{OL}	Low level output current Receiver			16	IIIA
T _A	Operating free-air temperature range		0	70	°C

Electrical characteristics ST75185C

3 Electrical characteristics

Table 7. Supply currents

Cymhal	Dovometer	-	Test conditions			Value		
Symbol	Parameter	V _{DD}	V _{SS}		Min.	Тур.	Max.	Unit
		9	-9	No load.			15	
		12	-12	all inputs at			19	mA
	Cumply ourrent from V	15	-15	1.9V			25	
I _{DD}	Supply current from V _{DD}	9	-9	No load.			4.5	
		12	-12	all inputs at 0.8V			5.5	mA
		15	-15				9	
		9	-9	No load.			-15	
		12	-12	all inputs at			-19	mA
	Cumply ourrent from V	15	-15	1.9V			-25	
I _{SS}	Supply current from V _{SS}	9	-9	No load.			-3.2	
		12	-12	all inputs at			-3.2	mA
		15	-15	0.8V			-3.2	
I _{CC}	Supply current from V _{CC}	No le	oad. All inp				30	mA

 $V_{DD} = 9 \text{ V}, V_{SS} = -9 \text{ V}, V_{CC} = 5 \text{ V}, \text{ unless otherwise specified.}$

Table 8. Driver electrical characteristics over operating free-air temperature range

Cumbal	Parameter	Test conditions		Unit		
Symbol	Farameter	rest conditions	Min.	Тур.	Max.	Offic
V _{OH}	High level output voltage	$V_{IL} = 0.8 \text{ V}, R_L = 3k\Omega$ (See <i>Figure 3</i>)	6	7.5		V
V _{OL}	Low level output voltage (Note 3)	$V_{IH} = 1.9 \text{ V}, R_L = 3k\Omega$ (See <i>Figure 3</i>)		-7.5	-6	V
I _{IH}	High level input current	V _I = 5 V (See <i>Figure 4</i>)			10	μΑ
I _{IL}	Low level input current	V _I = 0 V (See <i>Figure 4</i>)			-1.6	mA
I _{OS(H)}	High level short circuit output current (Note 4)	$V_{IL} = 0.8 \text{ V}, V_O = 0 \text{ V}$ (See <i>Figure 3</i>)	-4.5	-12	-19.5	mA
I _{OS(L)}	Low level short circuit output current	$V_{IH} = 2 V$ $V_{O} = 0 V$ (See <i>Figure 3</i>)	4.5	12	19.5	mA
R _O	Output resistance	$V_{DD} = V_{SS} = V_{CC} = 0 \text{ V}$ $V_{O} = -2 \text{ to 2 V (Note 3)}$	300			Ω

Note:

- 1 The algebraic convention, where the more positive (less negative) limits designated as maximum, is used in this datasheet for logic levels only (e.g. if 10 V is a maximum, the typical value is a more negative voltage).
- 2 Output short circuit conditions must maintain the total power dissipation below absolute maximum ratings.
- 3 Test conditions are those specified by EIA-232-E and as listed above.

$$V_{DD}$$
 = 12 V, V_{SS} = -12 V, V_{CC} = 5 V, T_A = 25 °C

Table 9. Driver switching characteristics

Symbol	Parameter	Test conditions	Value			Unit
		rest conditions	Min.	Тур.	Max.	Offic
t _{PLH}	Propagation Delay Time, Low to High Level Output	$R_L = 3 \text{ to } 7 \text{ k}\Omega$ $C_L = 15 \text{ pF}$ (See <i>Figure 5</i> , <i>Figure 6</i>)		315	500	ns
t _{PHL}	Propagation Delay Time, High to Low Level Output	$R_L = 3 \text{ to } 7 \text{ k}\Omega$ $C_L = 15 \text{ pF}$ (See <i>Figure 5</i> , <i>Figure 6</i>)		75	175	ns
+	Transition Time Low to High Level	$R_L = 3 \text{ to } 7 \text{ k}\Omega$ $C_L = 15 \text{ pF}$ (See <i>Figure 5</i> , <i>Figure 6</i>)		60	100	ns
t _{TLH}	Output	$R_L = 3 \text{ to } 7 \text{ k}\Omega$ $C_L = 2500 \text{ pF}$ (Note 4, Figure 5, Figure 6)		1.7	2.5	μs
t	t _{THL} Transition Time High to Low Level Output	$R_L = 3 \text{ to } 7 \text{ k}\Omega$ $C_L = 15 \text{ pF}$ (See <i>Figure 5</i> , <i>Figure 6</i>)		40	7.5	ns
THL		$R_L = 3 \text{ to } 7 \text{ k}\Omega$ $C_L = 2500 \text{ pF}$ (Note 4, Figure 5, Figure 6)		1.5	2.5	μs

4 Measured between -3 V and 3 V points of output waveform (EIA-232-E conditions), all unused inputs are tied.

Table 10. Receiver electrical characteristics over operating conditions

Cumbal	Dovementor	Toot conditions		Value			Unit
Symbol	Parameter	lest co	Test conditions		Тур.	Max.	Unit
V _{T+}	Positive going threshold voltage	(See Figure 9)			2.2	2.4	V
V _{T-}	Negative going threshold voltage	T _A = 25 °C (Se	e <i>Figure 9</i>)	0.75	0.97		V
V _{hys}	Input hysteresis (V _T + - V _T)			0.5			V
M	Lieb level evitovit veltere	I _{OH} = -0.5mA	V _{IH} = 0.75 V	2.6	4	5	V
V _{OH}	High level output voltage		Inputs Open	2.6			- V
V _{OL}	Low level output voltage	$V_I = 3 V I_{OL}$	= 10 mA		0.2	0.45	V
	Library I and in most account of	V _I = 25 V (Se	e <i>Figure 9</i>)	3.6		8.3	А
I _{IH}	High level input current	V _I = 3 V (Se	e <i>Figure 9</i>)	0.43			mA
	Low level input current $ V_{l} = -25 \text{ V (See } Figure 9) $ $ V_{l} = -3 \text{ V (See } Figure 9) $	e Figure 9)	-3.6		-8.3		
I _{IL}		V _I = -3 V (Se	e <i>Figure 9</i>)	-0.43			mA
I _{os}	Short-circuit output current	$V_I = 0 V V_O$ (See <i>Figure 7</i>)			-3.4	-12	mA

Note: All typical values are at $T_A = 25$ °C, $V_{CC} = 5$ V, $V_{DD} = 9$ V and $V_{SS} = -9$ V

$$V_{DD}$$
 = 12 V, V_{SS} = -12 V, V_{CC} = 5 V T_A = 25 °C

Table 11. Receiver switching characteristics

Symbol	Parameter	Test conditions	Value			Unit
	Farameter	rest conditions	Min.	Тур.	Max.	Offic
t _{PLH}	Propagation delay time low to high level output	$R_L = 5 \text{ k}\Omega$ $C_L = 50 \text{ pF}$ (See <i>Figure 9</i>)		400	1000	ns
t _{PHL}	Propagation delay time high to low level output	$R_L = 5 \text{ k}\Omega$ $C_L = 50 \text{ pF}$ (See <i>Figure 9</i>)		70	150	ns
t _{TLH}	Transition time low to high level output	$R_L = 5 \text{ k}\Omega$ $C_L = 50 \text{ pF}$ (See <i>Figure 9</i>)		200	525	ns
t _{THL}	Transition time high to low level output	$R_L = 5 \text{ k}\Omega$ $C_L = 50 \text{ pF}$ (See <i>Figure 9</i>)		20	60	ns

ST75185C Typical application

4 Typical application

Figure 2. Application circuits

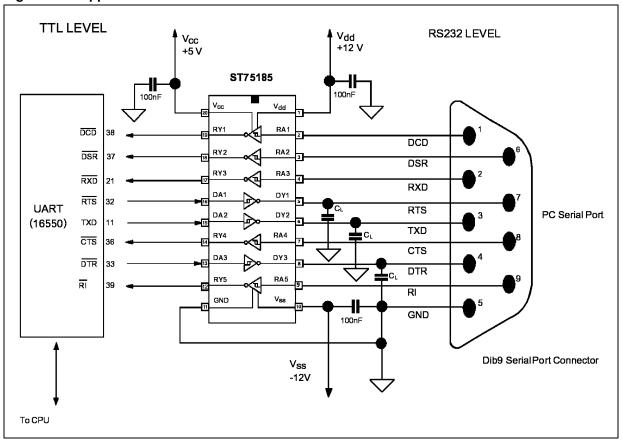
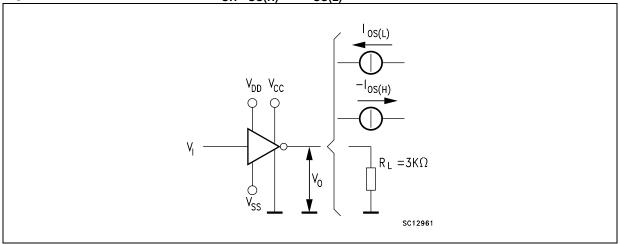



Figure 3. Driver test circuit for V_{OH} , $I_{SO(H)}$ and $I_{SO(L)}$

Typical application ST75185C

Figure 4. Driver test circuit for I_{IH} and I_{IL}

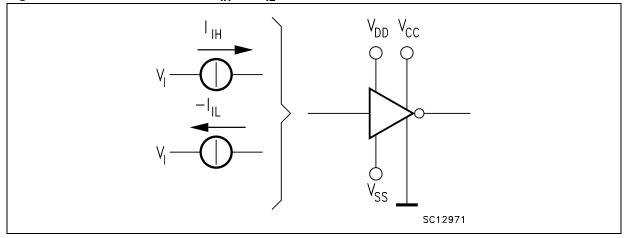


Figure 5. Driver test circuit

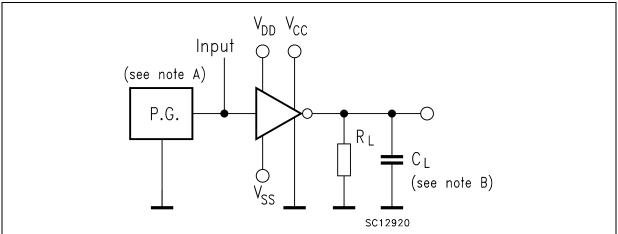
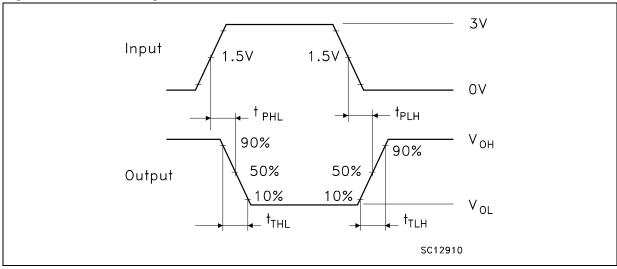



Figure 6. Driver voltage waveforms

577

ST75185C Typical application

Figure 7. Receiver test circuit for I_{OS}

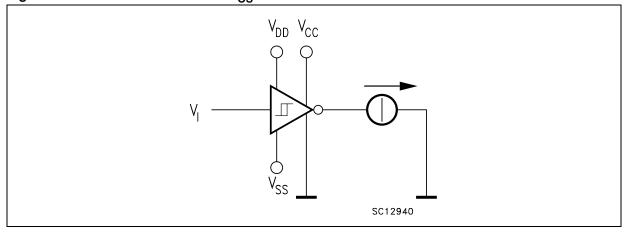


Figure 8. Receiver test circuit for V_T, V_{OH}, V_{OL}

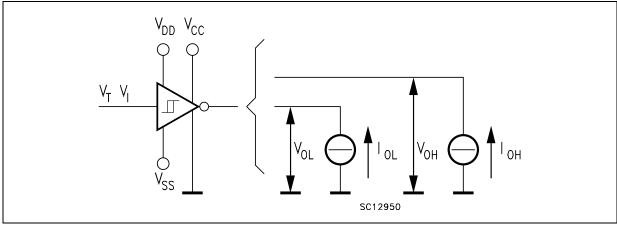
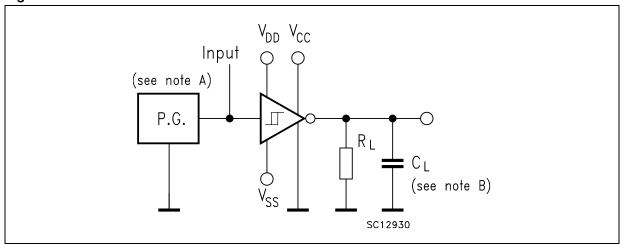
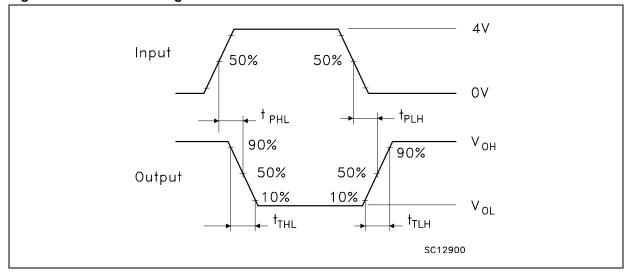




Figure 9. Receiver test circuit

Typical application ST75185C

Figure 10. Receiver voltage waveforms

Note: 1 The pulse generator has the following characteristics: t_W = 25 μ s, PRR = 20 kHz, Z_O = 50 Ω , t_r = t_f < 50 ns

2 C_L includes probe and jig capacitance.

5 Typical characteristics

Figure 11. Driver voltage transfer characteristics

Figure 12. Driver short circuit output current vs. free-air temperature

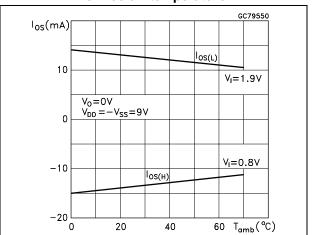
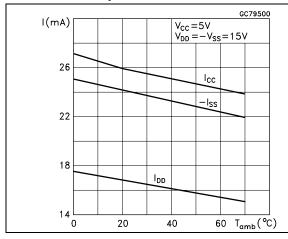



Figure 13. Device supply current vs. temperature

Figure 14. Driver output current vs. output voltage

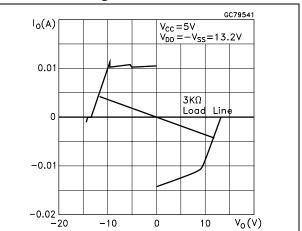
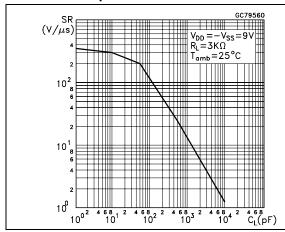
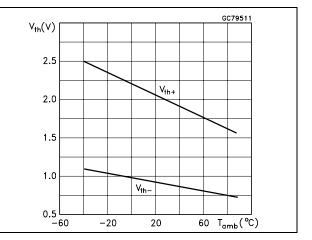
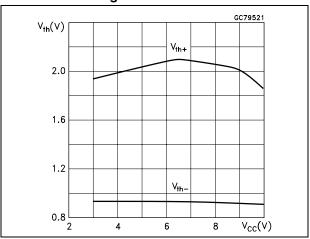
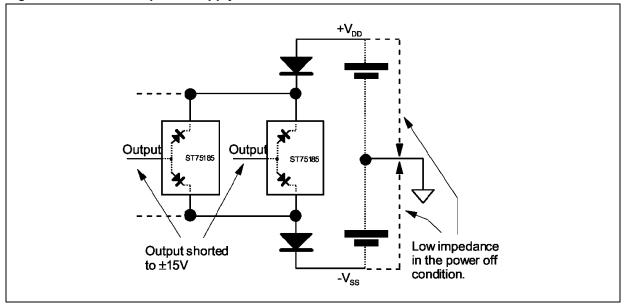



Figure 15. Driver output slew rate vs. load capacitance

Figure 16. Receiver threshold vs. temperature

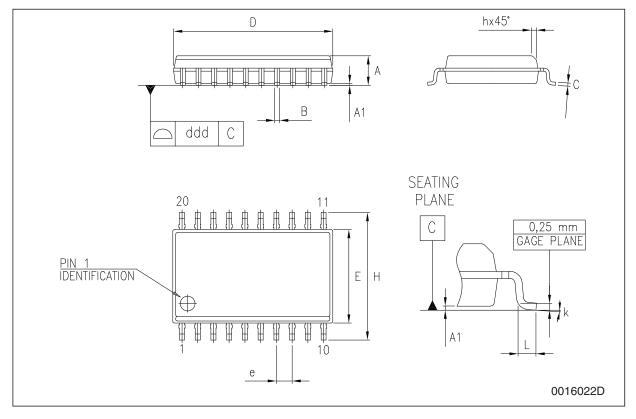




Figure 17. Receiver threshold vs. supply voltage

6 Application information: diodes on power supply

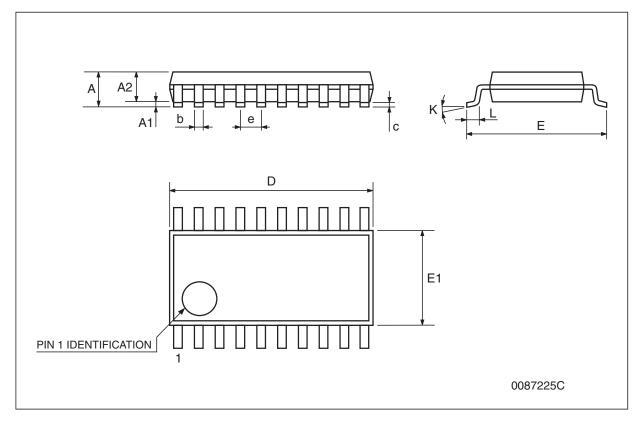
Diodes placed in series with the V_{DD} and V_{SS} leads protect the ST75185C in the fault condition in which the devices output are shorted to ± 15 V and the power supplies are at low state and provide low-impedance path to ground (see *Figure 18*).

Figure 18. Diodes on power supply

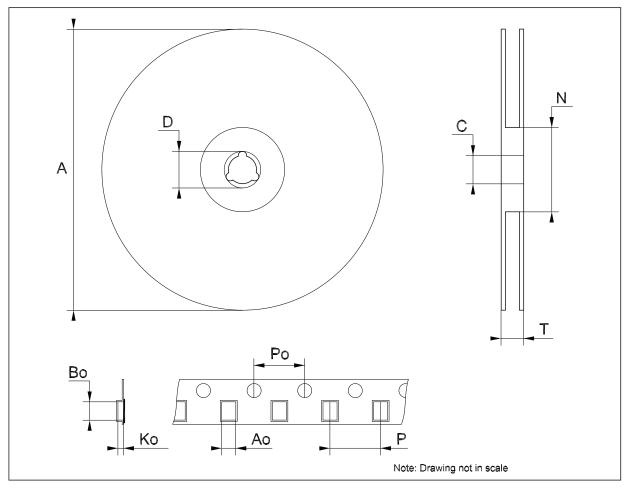


7 Package mechanical data

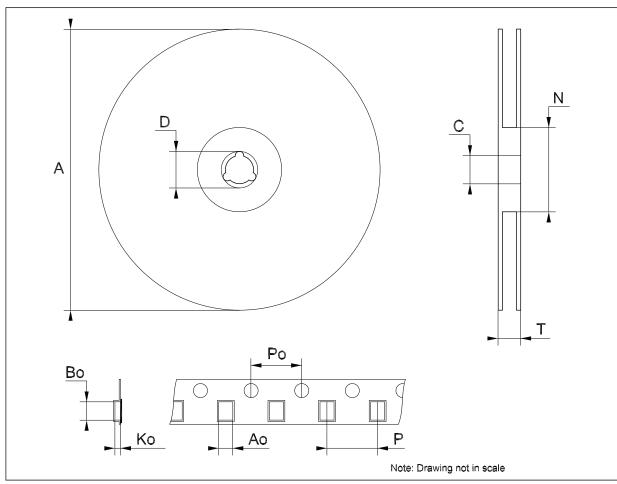
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.


SO-20 mechanical data

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.35		2.65	0.093		0.104
A1	0.1		0.30	0.004		0.012
В	0.33		0.51	0.013		0.020
С	0.23		0.32	0.009		0.013
D	12.60		13.00	0.496		0.512
Е	7.4		7.6	0.291		0.299
е		1.27			0.050	
Н	10.00		10.65	0.394		0.419
h	0.25		0.75	0.010		0.030
L	0.4		1.27	0.016		0.050
k	0°		8°	0°		8°
ddd			0.100			0.004


TSSOP20 mechanical data

Dim.	mm.			inch.	inch.	
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0079
D	6.4	6.5	6.6	0.252	0.256	0.260
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
е		0.65 BSC			0.0256 BSC	
К	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030


Tape & reel SO-20 mechan	ical data
--------------------------	-----------

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			30.4			1.197
Ao	10.8		11	0.425		0.433
Во	13.2		13.4	0.520		0.528
Ko	3.1		3.3	0.122		0.130
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Tape 8	& reel	TSSOP20	mechanical	data
--------	--------	---------	------------	------

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.8		7	0.268		0.276
Во	6.9		7.1	0.272		0.280
Ko	1.7		1.9	0.067		0.075
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

ST75185C Revision history

8 Revision history

Table 12. Document revision history

Date	Revision	Changes	
28-Apr-2006	15	Order codes updated.	
01-Jun-2006	16	Modified: Figure 2.	
19-Dec-2007	17	Added: Table 5.	
07-Apr-2009	18	Modified Table 5 on page 4.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

22/22 Doc ID 6228 Rev 18

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RS-232 Interface IC category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

062191EB CH438L LT1039CN LTC1327CNW LTC1327CSW MAX3386ECPWR TRS222IDWR MAX232INE4 MAX3232CPW
MAX204CWE+ TRS3243EIDWR TRS3232EIDWR SN65C3232EDWR ADM208ARZ-REEL LT1780CSW#PBF LT1237CSW#PBF
LT1281AISW#PBF LTC1337CSW#PBF LT1180ACN#PBF LT1237CNW#PBF LT1039CN#PBF LT1032CSW#PBF LT1130ACSW#PBF
LTC1349ISW#PBF LT1032ISW#PBF LTM2882IY-3#PBF LT1140ACN#PBF LTC1384IG#PBF LTC1383CS#PBF LT1280AIN#PBF
LT1080ISW#PBF LTC2845IG#PBF LTC1383CN#PBF LTC2845CG#PBF LTC2846CG#PBF LTC1384CG#PBF LT1781IS#PBF
LT1081IN#PBF LT1131ACNW LT1131ACSW SN75188DE4 LTC1350CNW MAX3209EEUU+T AD7306AR AD7306ARZ AD7306JNZ
AD7306JRZ ADM3311EARSZ-REEL ADM3310EACPZ-REEL7 ADM3202ARUZ-REEL7