MULTIPLE RS-232 DRIVERS AND RECEIVERS

- MEETS AND EXCEEDS THE REQUIREMENTS OF EIA/TIA-232-E AND ITUV. 28 STANDARD
- SINGLE CHIP WITH EASY INTERFACE BETWEEN UART AND SERIAL PORT CONNECTOR OF IBM PC/AT ${ }^{T M}$ AND COMPATIBLES
- DESIGNED TO SUPPORT DATA RATES UP TO 120 Kbps

DESCRIPTION

The ST75285 contains six drivers and ten receivers. The pinout matches the DB9S connector design in order to decrease the part count, reduce the board space required and allow easy interconnection of the UART and serial port connector of IBM PC/AT ${ }^{\text {TM }}$ and compatibles. The bipolar circuits and processing of the ST75285 provides a rugged low-cost solution for this function at the expense of quiescent power and external passive components relative to the ST75C185.
The ST75285 complies with the requirements o the EIA/TIA 232-E and ITU (formally CCITT) v. 28 standards. These standards are for data interchange between a host conf putar and

peripheral at signalling rates un to z'Jk-bits/s. The switching speeds of the ST: $5<95$ are fast enough to support rates un to 1 ? UK-bits/s with lower capacitive loads (¿hrrtt? cables). Interoperability at the higher sinnaling rates cannot be assured unless the ve.irner has design control of the cable ar d t'ie interface circuits at the both ends. For interuperability at signalling rates to 120 K-Lito's, use of EIA/ITA-423-B (ITU v.10) and EIA/ 'T八-422-B (ITU v.11) standards are recommended. It allows space saving in applications where two ST75185 are needed.

ORDERING CODES

Type	Temperat:0 Zic ny	Package	Comments
ST75285CTR	to $70^{\circ} \mathrm{C}$	TSSOP38 (Tape \& Reel)	2500 parts per reel

PIN DESCRIPTION

PIN CONNECTION IEC LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage (Note 1)	-0.3 to 15	V
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage (Note 1)	0.3 to -15	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage (Note 1)	-0.3 to 10	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage Range (DRIVER)	-15 to 7	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage Range (RECEIVER)	-30 to 30	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage Range (DRIVER)	-15 to 15	V
I_{O}	Receiver Low Level Output Current	20	mA
P_{D}	Continuous Total Power Dissipation	See dissipation Rating Table	
T_{A}	Operating Free-Air Tempereature Range	0 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model	>2	kV
T_{L}	Lead Temperature 1.6mm from case for 10 sec	260	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.
NOTE 1: All voltage are with respect to the network ground terminal.
DISSIPATION RATING TABLE

Package	Power Rating at $\mathbf{T}_{\mathbf{A}} \leq \mathbf{2 5}{ }^{\circ} \mathbf{C}$	Derating Factor above $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}\left({ }^{*}\right)$	Power Rating at $\mathbf{T}_{\mathbf{A}} \leq \mathbf{8 5}{ }^{\circ} \mathbf{C}$
TSSOP (T)	1277 mW	$10.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	644 mW

$\left(^{*}\right)$ This is the reverse of the traditional junction-case thermal resistance $\mathrm{R}_{\mathrm{tJ}-\mathrm{C}}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V_{DD}	Supply Voltage	7.5	15	V	
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	-7.5	-15	V	
$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage	4.5	5.5	V	
$\mathrm{~V}_{\mathrm{I}}$	Driver Input Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V	
I_{OH}	High Level Output Current	DRIVER		-6	mA
		RECEIVER		-0.5	
I_{OL}	Low Level Output Current	DRIVER		6	mA
		RECEIVER		16	
$\mathrm{~T}_{\mathrm{A}}$	Operating Free-Air Tempereature	0	70	${ }^{\circ} \mathrm{C}$	

SUPPLY CURRENTS

Symbol	Parameter	Test Conditions			Value			Unit
		V_{DD}	$\mathrm{V}_{\text {SS }}$		Min.	Typ.	Max.	
I_{DD}	Supply Current from V ${ }_{\text {DD }}$	9	-9	No load. All inputs at 1.9 V			22	mA
		12	-12				28	
		15	-15				32	
		9	-9	No load. All inputs at 0.8 V			9	mA
		12	-12		-		11	
		15	-15		3		12	
$I_{\text {SS }}$	Supply Current from $\mathrm{V}_{\text {SS }}$	9	-9	No load. All inputs at 1.9 V	O		-22	mA
		12	-12				-28	
		15	-15				-32	
		9	-9	No load. All inputs at 0.8 V			-6.4	mA
		12	-12				-6.4	
		15	-15				-6.4	
$I_{\text {cc }}$	Supply Current from V_{CC}	No load. All inputs at 5 V $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$					60	mA

DRIVER ELECTRICAL CHARACTERISTICS OVER OPERATING FREE-AIR TEMPERATURE
RANGE ($\mathrm{V}_{\mathrm{DD}}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-9 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
V_{OH}	High Level Output Voltage	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=3 \mathrm{~K} \Omega$ (See Figure 1)	6	7.5		V
V_{OL}	Low Level Output Voltage (Note 3)	$\mathrm{V}_{\mathrm{IH}}=1.9 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=3 \mathrm{~K} \Omega$ (See Figure 1)		-7.5	-6	V
I_{H}	High Level Input Current	$\mathrm{V}_{1}=5 \mathrm{~V}$ (See Figure 2)			10	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{1}=0 \mathrm{~V}$ (See Figure 2)			-1.6	mA
$\mathrm{l} \mathrm{OS}(\mathrm{H})$	High Level Short Circuit Output Current (Note 4)	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ (See Figure 1)	-4.5	-12	-19.5	mA
$\mathrm{los}(\mathrm{L})$	Low Level Short Circuit Output Current	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ (See Figure 1)	4.5	12	19.5	mA
R_{O}	Output Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=-2 \text { to } 2 \mathrm{~V} \text { (Note 5) } \end{aligned}$	300			Ω

[^0]DRIVER SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$t_{\text {PLH }}$	Propagation Delay Time, Low to High Level Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=3 \text { to } 7 \mathrm{~K} \Omega \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { (See Figure 3, 4) } \end{aligned}$		200	400	ns
${ }_{\text {tPHL }}$	Propagation Delay Time, High to Low Level Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=3 \text { to } 7 \mathrm{~K} \Omega \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { (See Figure 3, 4) } \end{aligned}$		50	100	ns
${ }_{\text {t }}^{\text {tin }}$	Transition Time Low to High Level Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=3 \text { to } 7 \mathrm{~K} \Omega \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { (See Figure 3, 4) } \\ & \hline \end{aligned}$		60	100	ns
		$\mathrm{R}_{\mathrm{L}}=3 \text { to } 7 \mathrm{~K} \Omega \quad \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$ (Note 6, See Figure 3, 4)		1.7	2.5	$\mu \mathrm{s}$
${ }_{\text {t }}$ HL	Transition Time High to Low Level Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=3 \text { to } 7 \mathrm{~K} \Omega \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { (See Figure 3, 4) } \end{aligned}$		50	100	ns
		$\mathrm{R}_{\mathrm{L}}=3 \text { to } 7 \mathrm{~K} \Omega \quad \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$ (Note 6, See Figure 3, 4)		1.5	2.5	$\mu \mathrm{s}$

NOTE 6: Measured between -3 V and 3 V points of output waveform (EIA-232-E conditions), all unused inputs are tied.
RECEIVER ELECTRICAL CHARACTERISTICS OVER OPERATING CONDITIONS

Symbol	Parameter	Test Conditions		Value			Unit
				Min.	Typ.	Max.	
$\mathrm{V}_{\text {T+ }}$	Positive Going Threshold Voltage	(See Figure 6)			2.2	2.4	V
$\mathrm{V}_{\text {T- }}$	Negative Going Threshold Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Figure 6)		0.75	0.97		V
$\mathrm{V}_{\text {hys }}$				0.5			V
V_{OH}	High Level Output Voltage	$\mathrm{l}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	$\mathrm{V}_{1 \mathrm{H}}=0.75 \mathrm{~V}$	2.6	4	5	V
			Inputs Open	2.6			
V_{OL}	Low Level Output Voltage	$\mathrm{V}_{1}=3 \mathrm{~V} \quad \mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$			0.2	0.45	V
I_{IH}	High Level Input Current	$\begin{array}{\|ll} \hline \mathrm{V}_{\mathrm{I}}=25 \mathrm{~V} & (\text { See Figure 6) } \\ \hline \mathrm{V}_{\mathrm{I}}=3 \mathrm{~V} & \text { (See Figure 6) } \end{array}$		3.6		8.3	mA
				0.43			
IIL	Low Level Input Current	$\mathrm{V}_{1}=-25 \mathrm{~V}$ (See Figure 6)		-3.6		-8.3	mA
		$\mathrm{V}_{1}=-3 \mathrm{~V}$ (See Figure 6)		-0.43			
los	Short-Circuit Output Current	$\begin{aligned} & \mathrm{V}_{1}=0 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \\ & \text { (See Figure 5) } \end{aligned}$			-3.4	-12	mA

All typical values are at $\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}, \mathrm{VDD}=9 \mathrm{~V}$ and $\mathrm{VSS}=-9 \mathrm{~V}$
RECEIVER SWITCHING CHARACTERISTICS ($\left.\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{~K} \Omega \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (See Figure 6)		200	500	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{~K} \Omega \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (See Figure 6)		60	120	ns
${ }_{\text {t }}^{\text {TLH }}$	Transition Time Low to High Level Output	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{~K} \Omega \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (See Figure 6)		200	525	ns
${ }^{\text {t }}$ HL	Transition Time High to Low Level Output	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{~K} \Omega \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (See Figure 6)		20	60	ns

Figure 1 : Driver Test Circuit for $\mathrm{V}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{SO}(\mathrm{H})}$ and $\mathrm{I}_{\mathrm{SO}(\mathrm{L})}$

Figure 2 : Driver Test Circuit for I_{IH} and I_{IL}

Figure 3 : Driver Test Circuit

Figure 4 : Driver Voltage Waveforms

Figure 5 : Receiver Test Circuit for IOS

Figure 6 : Receiver Test Circuit for $\mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}$

Figure 7 : Receiver Test Circuit

Figure 8 : Receiver Voltage Waveforms

NOTE A: The pulse generator has the following characteristics: $\mathrm{t}_{\mathrm{W}}=25 \mu \mathrm{~s}, \mathrm{PRR}=20 \mathrm{KHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}<50 \mathrm{~ns}$ NOTE B: C_{L} includes probe and jig capacitance.

Figure 9 : Driver Voltage Transfer Characteristics

Figure 10 : Driver Short Circuit Output Current vs Free-Air Temperature

Figure 11: Receiver Threshold vs Supply Voltage

Figure 12 : Driver Output Current vs Output Voltage

Figure 13 : Driver Output Slew Rate vs Load Capacitance

Figure 14 : Receiver Threshold vs Temperature

APPLICATION INFORMATION: DIODES ON POWER SUPPLY

Diodes placed in series with the VDD and VSS leads protect the ST75185 in the fault condition in which the devices output are shorted to $\pm 15 \mathrm{~V}$ and the power supplies are at low state and provide low-impedance path to ground (see Figure below).

TSSOP38 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.2			0.047
A1	0.05		0.15	0.002		0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.17		0.27	0.0067		0.011
c	0.09		0.20	0.0035		0.0079
D	9.6	9.7	9.8	0.378	0.381	0.385
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.5	0.169	0.173	0.177
e		0.5			0.0197	
K	0°		8°	0°		8°
L	0.50	0.6	0.75	0.020	0.023	0.030

Tape \& Reel TSSOP38 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		0.882
T			7	0.268		0.276
Ao	6.8		10.3	0.398		0.406
Bo	10.1		1.9	0.067		0.075
Ko	1.7		4.1	0.153		0.161
Po	3.9		12.1	0.468		0.476
P	11.9					

Note: Drawing not in scale

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
5962-9217601MSA 634810D HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG NLU3G16AMX1TCG
NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) 74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7 74AUP2G3404FW3-7 MAX9972ACCS+D 74AUP1G34FW5-7

[^0]: NOTE 3: The algebraic convention, where the more positive (less negative) limits designated as maximum, is used in this datasheet for logic levels only (e.g. if - 10 V is a maximum, the typical value is a more negative voltage).
 NOTE 4: Output short circuit conditions must maintain the total power dissipation below absolute maximum ratings.
 NOTE 5: Test conditions are those specified by EIA-232-E and as listed above.

