

STAP16DPPS05

Automotive-grade low voltage 16-bit constant current LED sink driver with output error detection and auto power-saving

Datasheet - production data

Features

- AECQ100 gualified
- Low voltage power supply down to 3 V
- 16 constant current output channels
- Adjustable output current through external resistor
- Short and open output error detection
- Serial data IN/parallel data OUT
- 3.3 V micro driver-able
- Auto power-saving
- Output current: 3 40 mA
- Auto power-saving
- Max. clock frequency: 30 MHz
- 20 V current generator rated voltage
- Power supply voltage: from 3 V to 5.5 V
- Thermal shutdown for overtemperature protection
- ESD protection 2.0 KV HBM

Applications

- Dashboard and infotainment backlighting
- Exterior/interior lighting
- DTRLs

Description

designed for LED panel displays. The device contains a 16-bit serial-in, parallel-out shift register that feeds a 16-bit D-type storage register. In the output stage, sixteen regulated current sources are designed to provide 3 to 40 mA of constant current to drive the LEDs.

The STAP16DPPS05 features the open and short LED detection on the outputs. The detection circuit checks 3 different conditions which may occur on the output line: short to GND, short to Vo or open line. The data detection results are loaded in the shift register and shifted out via the serial line output. The detection functionality is implemented without increasing the pin number through a secondary function of the output enable and latch pin (DM1 and DM2 respectively). A dedicated logic sequence allows the device to enter or leave detection mode. Through an external resistor, users can adjust the output current of the STP16DPPS05 thus controlling the light intensity of the LEDs. In addition, the user can adjust the intensity of the brightness of the LED's from 0 % to 100 %

through the OE/DM2 pin. The auto power

shutdown and auto power-ON feature allows the device to save power with no external intervention. The STAP16DPPS05 guarantees a 20 V output driving capability, allowing users to connect more LEDs in series. The high clock frequency, 30 MHz also satisfies the system requirement of high volume data transmission. The 3.3 V of voltage supply is very useful for applications interfacing any microcontroller from 3.3 V micro. Compared with a standard TSSOP package, the TSSOP exposed pad increases the capability of heat dissipation by a factor of 2.5.

The STAP16DPPS05 is a monolithic, low voltage, low current power 16-bit shift register Table 1: Device summary

Order code	Package	Packing
STAP16DPPS05XTTR	TSSOP24 (exposed pad)	2500 parts per reel

November 2017

DocID024306 Rev 7

1/29

This is information on a product in full production.

Contents

Со	ntents		
1	Summa	ry description	3
	1.1	Pin connections and description	3
2	Electric	al ratings	4
	2.1	Absolute maximum ratings	4
	2.2	Thermal data	4
	2.3	Recommended operating conditions	5
3	Electric	al characteristics	6
4	Equival	ent circuit and outputs	8
5	Timing	diagrams	11
6	Typical	characteristics	14
7		etection mode functionality	
	7.1	Phase one: entering error detection mode	
	7.2	Phase two: error detection	19
	7.3	Phase three: resuming normal mode	21
	7.4	Error detection conditions	21
	7.5	Auto power-saving	23
8	Packag	e information	24
	8.1	TSSOP24 exposed pad package information	25
	8.2	TSSOP24 packing information	27
9	Revisio	n history	

1 Summary description

Table 2: Typical current accuracy					
	e Current accuracy Output current V _{DD} Temp				
Output voltage	Between bits	Between ICs	Output current	VDD	Temperature
≥ 1.3 V	±1%	±2%	5 to 40 mA	3.3 V to 5 V	25 °C

1.1 Pin connections and description

Figu	ure 1: Pin conr	nection	
GND [24] V _{DD}	
SDI [2	23] R-EXT	
CLK [3	22] SDO	
LE/DM1 [4	21] OE/DM2	
ουτο [5	20] OUT15	
Ουτ1 [6	19] OUT14	
Ουτ2 [7	18] OUT13	
Ουτ3 [8	17] OUT12	
OUT4 [9	16] OUT11	
Ουτ5 [10	15] OUT10	
Ουτε [11	14] OUT9	
ουτ7 [12	13] OUT8	
	CS1	5121	GIPD280920150957MT

The exposed pad is electrically connected to a metal layer electrically isolated or connected to ground.

Pin n°	Symbol	Name and function
1	GND	Ground terminal
2	SDI	Serial data input terminal
3	CLK	Clock input terminal
4	LE/DM1	Latch input terminal - detect mode 1 (see operation principle)
5-20	OUT-15	Output terminal
21	OE/DM2	Input terminal of output enable (active low) - detect mode 1 (see operation principle)
22	SDO	Serial data out terminal
23	R-ext	Input terminal for an external resistor for constant current programming
24	V_{DD}	Supply voltage terminal

2 Electrical ratings

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit
V _{dd}	Supply voltage	0 to 7	V
Vo	Output voltage	-0.5 to 20	V
lo	Output current	50	mA
Vi	Input voltage	-0.4 to V_{dd}	V
Ignd	GND terminal current	800	mA
f _{CLK}	Clock frequency	50	MHz
T _{OPR}	Operating temperature range	-40 to +150	°C
T _{STG}	Storage temperature range	-55 to +150	°C

|--|

2.2 Thermal data

Table 5: Thermal data

Symbol	Para	neter	Value	Unit
R _{thj-amb}	Thermal resistance junction-ambient ⁽¹⁾	TSSOP24 (exposed pad) ⁽²⁾	37.5	°C/W

Notes:

⁽¹⁾According to JEDEC standard 51-7B.

⁽²⁾The exposed pad should be soldered to the PCB in order to derive the thermal benefits.

2.3 Recommended operating conditions

Table 6: Recommended operating conditions

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Vdd	Supply voltage		3.0	-	5.5	V
Vo	Output voltage			-	20	V
lo	Output current	OUTn	3	-	40	mA
Іон	Output current	SeriaL-OUT		-	+1	mA
lo∟	Output current	Serial-OUT		-	-1	mA
VIH	Input voltage		$0.7 V_{DD}$	-	V _{DD}	V
VIL	Input voltage		-0.3	-	0.3 V _{DD}	V
t _{wLAT}	LE/DM1 pulse width		20	-		ns
t _{wCLK}	CLK pulse width		10	-		ns
t _{wEN}	OE/DM2 pulse width	SeriaL-OUT Serial-OUT 0.7	100	-		ns
tsetup(d)	Setup time for DATA		8	-		ns
thold(d)	Hold time for DATA	-	5	-		ns
tsetup(L)	Setup time for LATCH		8	-		ns
fclк	Clock frequency	Cascade operation ⁽¹⁾		-	30	MHz

Notes:

 $^{(1)}$ If the device is connected in cascade, it may not be possible to achieve the maximum data transfer. Please consider the timings carefully.

3 Electrical characteristics

 V_{DD} = 5 V, T_{j} = -40 °C to 125 °C, unless otherwise specified.

Table 7: Electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
VIH	Input voltage high level		0.7·V _{DD}		V _{DD}	
VIL	Input voltage Iow level		GND		0.3·V _{DD}	V
Vol	Serial data output voltage	$I_{OL} = + 1 \text{ mA}$		0.03	0.4	
V _{OH}	(SDO)	I _{ОН} = - 1 mA	V _{DD} -0.4			
Іон	Output leakage current	Vo =19 V, OUTn = OFF		0.5	2	μΑ
ΔI_{OL1}		$V_{\text{DD}} = 3.3 \text{ V}, V_{\text{O}} = 0.3 \text{ V},$ $R_{\text{ext}} = 3.9 \text{ k}\Omega$		±1	±5	
ΔI_{OL2}	Current accuracy channel-to-channel (1)(2)	$V_{\text{DD}} = 3.3 \text{ V}, \text{ V}_{\text{O}} = 0.6 \text{ V},$ $R_{\text{ext}} = 980 \ \Omega$		±0.5	±4	
Δlol3		$V_{\text{DD}} = 3.3 \text{ V}, \text{ V}_{\text{O}} = 1.3 \text{ V},$ $R_{\text{ext}} = 490 \ \Omega$		±0.5	±4	%
Δlol2	Current accuracy device-	$V_{\text{DD}} = 3.3 \text{ V}, V_{\text{O}} = 0.6 \text{ V},$ $R_{\text{ext}} = 980 \ \Omega$			±5	
Δlol3	to-device ⁽¹⁾	$V_{\text{DD}} = 3.3 \text{ V}, V_{\text{O}} = 1.3 \text{ V},$ $R_{\text{ext}} = 490 \ \Omega$			±6	
R _{IN} (up)	Pull-up resistor for OE pin		150	300	600	
R _{IN} (down)	Pull-down resistor for LE pin		100	200	400	kΩ
IDD(AutoOff)		R_{ext} = 980 Ω , OE = low, OUT0 to OUT7 = OFF		200	300	μA
IDD(OFF1)	Supply current (OFF)	R_{ext} = 980 Ω , OE = high, OUT0 to OUT7 = ON		5	7.5	
IDD(OFF2)		R_{ext} = 490 Ω , OE = high, OUT0 to OUT15 = ON		8	11	
IDD(ON1)		R_{ext} = 980 Ω , OE = low, OUT0 to OUT15 = ON		6	7.5	mA
IDD(ON2)	Supply current (ON)	R_{ext} = 490 Ω , OE = low, OUT0 to OUT15 = ON		8	11	
Tsd	Thermal shutdown ⁽³⁾			170		°C

Notes:

⁽¹⁾Test performed with all outputs turned on, but only one output loaded at a time.

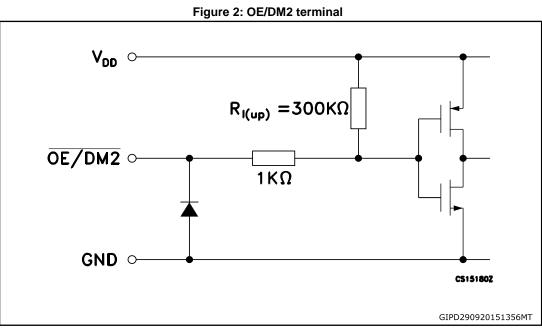
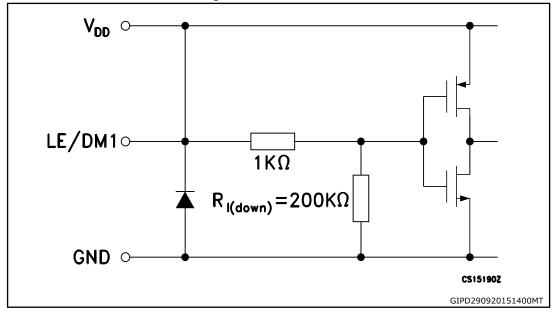
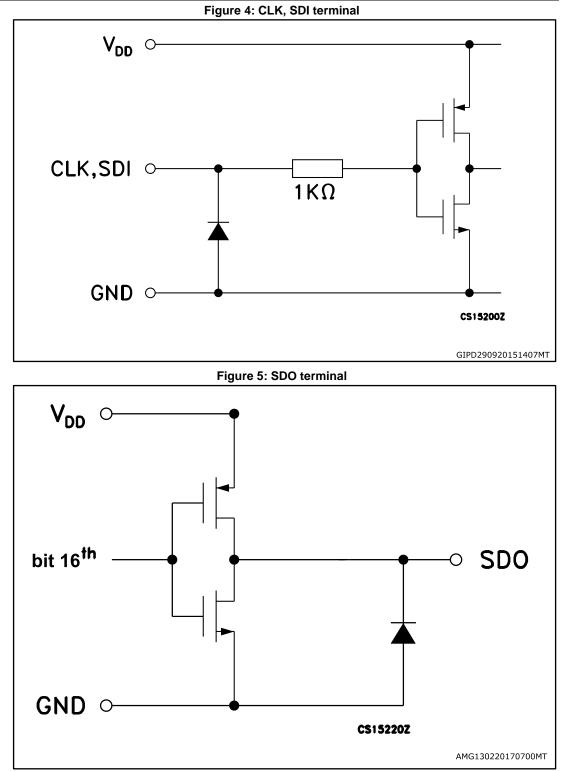
 $^{\rm (3)}{\rm Not}$ tested, guaranteed by design.

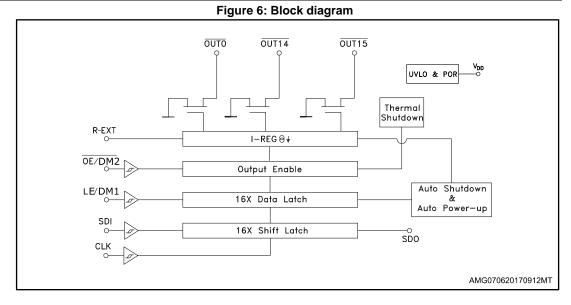
Table 8: Switching characteristics
(all table limits are guaranteed by design. Not tested in production.)

Symbol	Parameter	Test condition Min. Ty				Тур.	Max.	Unit
f _{clk}	Clock frequency	Cascade op	eration				30	MHz
	CLK- OUTn ,			$V_{DD} = 3.3 V$		55	90	
t _{PLH1}	$\frac{\text{LE/DM1} = \text{H},}{\text{OE/DM2}} = \text{L}$			$V_{DD} = 5 V$		30	50	ns
	LE/DM1- OUTn ,			V _{DD} = 3.3 V		48	80	
t _{PLH2}	OE/DM2 = L			V _{DD} = 5 V		30	45	ns
	OE/DM2 - OUTn ,			V _{DD} = 3.3 V		70	120	
t _{PLH3}	LE\\DM1 = H			$V_{DD} = 5 V$		45	65	ns
+	CLK-SDO			V _{DD} = 3.3 V		21	35	20
t _{PLH}	ULK-SDU			$V_{DD} = 5 V$		15	25	ns
	CLK OUTn ,		$V_{IL} = GND$ $C_L = 10 \text{ pF}$	V _{DD} = 3.3 V		28	35	
tphL1	$\frac{\text{LE/DM1} = \text{H},}{\text{OE/DM2}} = \text{L}$	$\label{eq:VIH} \begin{array}{l} V_{IH} = V_{DD} \\ V_{IL} = GND C_L = 10 \ pF \\ I_O = 20 \ mA V_L = 3.0 \ V \\ R_L = 60 \ \Omega \end{array}$		$V_{DD} = 5 V$		22	40	ns
	LE/DM1- OUTn ,			V _{DD} = 3.3 V		13	35	
tphl2	OE/DM2 = L			V _{DD} = 5 V		12	18	ns
	OE /DM2- OUTn ,	UTn ,		V _{DD} = 3.3 V		24	35	
tphl3	LE/DM1 = H			$V_{DD} = 5 V$		21	30	ns
				V _{DD} = 3.3 V		24	40	
t PHL	CLK-SDO			$V_{DD} = 5 V$		17	25	ns
	Output fall time			V _{DD} = 3.3 V		30	55	
ton	10~90 % of voltage waveform	-		$V_{DD} = 5 V$		10	20	ns
	Output rise time			V _{DD} = 3.3 V		4	10	
toff	90~10 % of voltage waveform			$V_{DD} = 5 V$		3	8	ns
tr	CLK rise time ⁽¹⁾						5	μs
t _f	CLK fall time ⁽¹⁾						5	۳۵

Notes:

⁽¹⁾If devices are connected in cascade and tr or tf is large, it may be critical to achieve the timing required for data transfer between two cascaded devices.


Figure 3: LE/DM1 terminal

57

5 **Timing diagrams**

	Table 9: Truth table					
Clock	LE/DM1	OE/DM2	Serial-IN	OUT0 OUT7 OUT15	SDO	
_ -	Н	L	Dn	Dn Dn - 7 Dn -15	Dn - 15	
_ -	L	L	Dn + 1	No change	Dn - 14	
_ -	Н	L	Dn + 2	Dn + 2 Dn - 5 Dn -13	Dn - 13	
- _	Х	L	Dn + 3	Dn + 2 Dn - 5 Dn -13	Dn - 13	
- _	Х	Н	Dn + 3	OFF	Dn - 13	

OUTn = ON when Dn = H OUTn = OFF when Dn = L.

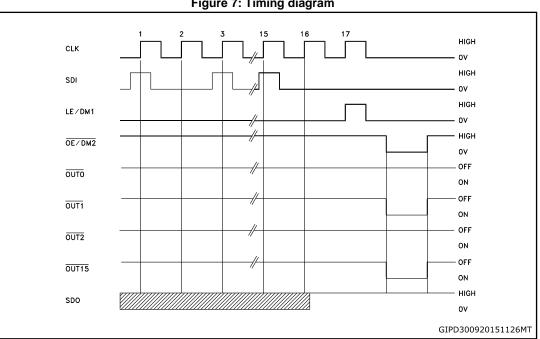
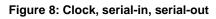
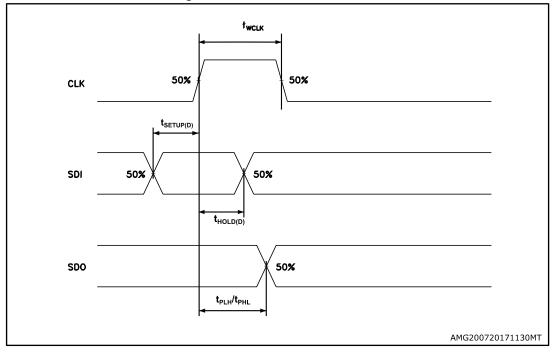


Figure 7: Timing diagram

Latch and output enable terminals are level-sensitive and are not synchronized with rising or falling edge of LE/DM1 signal. When LE/DM1 terminal is low level, the latch circuit holds previous set of data. When LE/DM1 terminal is high level, the latch circuit refreshes new set of data from SDI chain. When OE/DM2 terminal is at low level, the output terminals Out 0 to Out 15 respond to data in the latch circuits, either '1' ON or '0' OFF. When OE/DM2 terminal is at high level, all output terminals are switched OFF.

STAP16DPPS05


Clock	LE/DM1	SDI0 SDI7 SDI15	SH	Auto power-up	OUTn
_ -	Н	All = L	Active	Not active ⁽¹⁾	OFF
_ -	L	No change	No change	No change	No change
_ -	Н	One or more = H	Not active	Active	X ⁽²⁾


Table 10: Enable IO: shutdown truth table

Notes:

 $^{(1)}\mbox{At}$ power-up, the device starts in shutdown mode.

⁽²⁾Undefined.

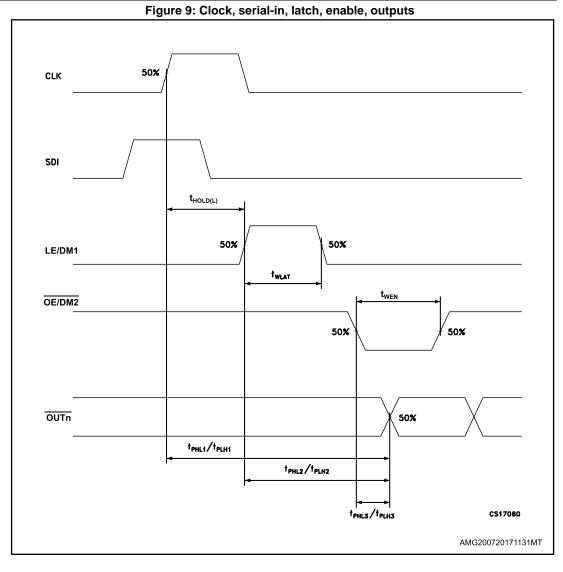
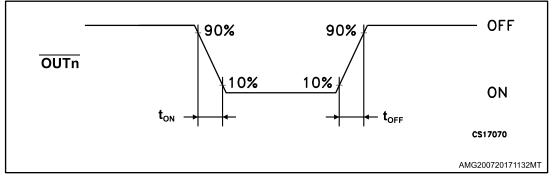
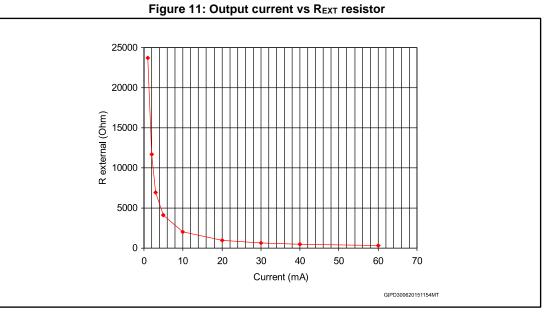
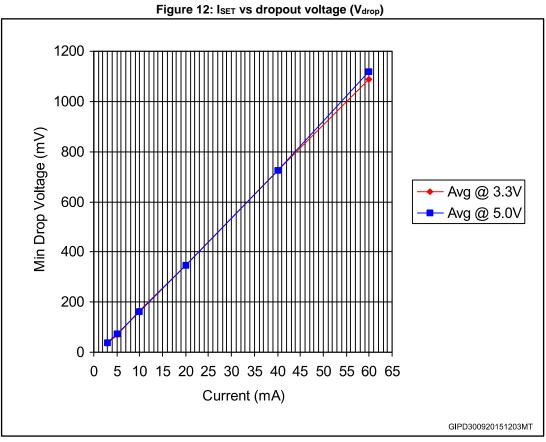




Figure 10: Outputs

6 Typical characteristics


Table 11: Output current vs REXT resistor

Rext (Ω)	Output current (mA)
NEXT (52)	Output current (IIIA)
23700	1
11730	2
6930	3
4090	5
2025	10
1000	20
667	30
497	40
331	60

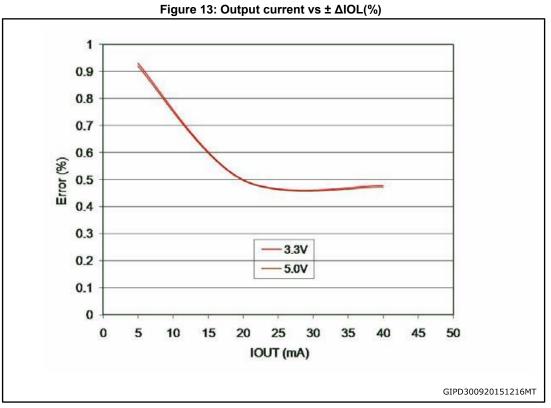
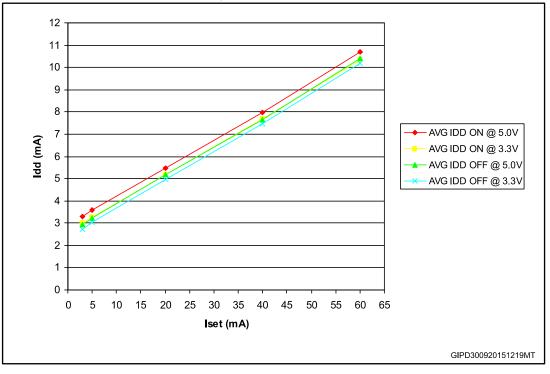
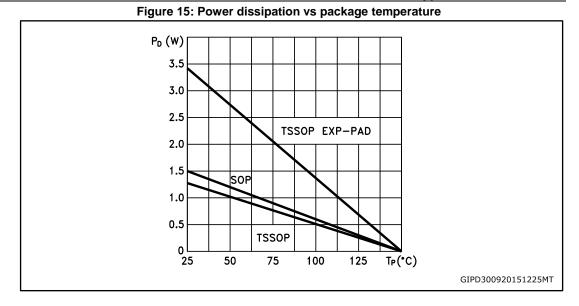
Conditions:

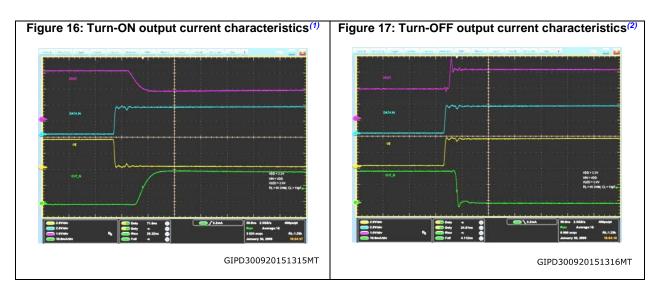
• temperature = 25 °C, V_{DD} = 3.3 V; 5.0 V, I_{SET} = 3 mA; 5 mA; 10 mA; 20 mA; 50 mA; 60 mA.

Table 12: ISET vs dropout voltage (Vdrop)

lout (mA)	Avg (mV) @ 3.3 V	Avg (mV) @ 5.0 V			
3	36	37			
5	71	72			
10	163	163			
20	346	347			
40	724	726			
60	1080	1110			

 $T_A = 25 \ ^{\circ}C, \ V_{DD} = 3.3 \ V; \ 5 \ V.$


Figure 14: Idd ON/OFF

The exposed pad should be soldered to the PCB to obtain the thermal benefits.

Notes:

⁽¹⁾The reference level for the TON characteristics is 50 % of OE/DM2 signal and 90 % of output current. ⁽²⁾The reference level for the TOFF characteristics is 50 % of OE/DM2 signal and 10 % of output current.

Electrical conditions:

- $V_{DD} = 3.3 \text{ V}$, $Vin = V_{DD}$, Vled = 3.0 V, $RL = 60 \Omega$, CL = 10 pF.
- Ch1 (yellow) = OE/DM2, Ch2 (blue) = SDI, Ch3 (purple) = VOUT, Ch4 (green) = OUT.

7 Error detection mode functionality

7.1 Phase one: entering error detection mode

From the "normal mode" condition the device can switch to "error mode" by a logic sequence on the OE/DM2 and LE/DM1 pins, as shown in the following table and diagram:

Table 10. Entering erfor detection mode - train table					
CLK	1°	2 °	3°	4 °	5°
OE/DM2	н	L	н	н	Н
LE/DM1	L	L	L	Н	L

Table 13: Entering error detection mode - truth table

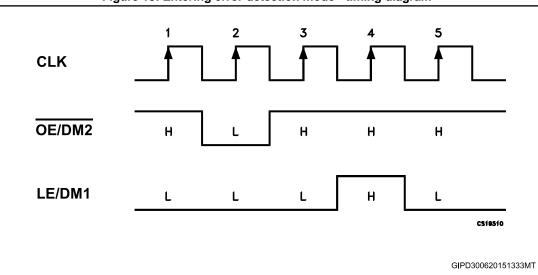


Figure 18: Entering error detection mode - timing diagram

After these five CLK cycles, the device goes into the "error detection mode" and at the 6th rising edge of the CLK, the SDI data are ready for sampling.

7.2 Phase two: error detection

The 16 data bits must be set to "1" in order to set ON all the outputs during detection. The data are latched by LE/DM1 and after that the outputs are ready for the detection process. When the microcontroller switches the $\overline{OE/DM2}$ to LOW, the device drives the LEDs in order to analyze if an OPEN or SHORT condition has occurred.

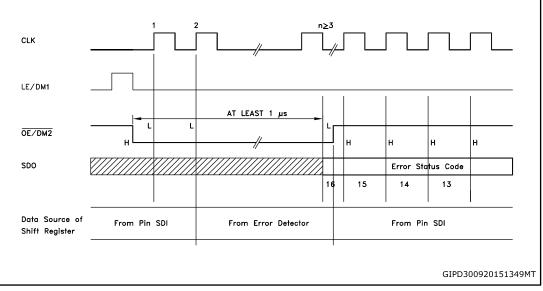


Figure 19: Detection diagram

The LED status is detected in 1 microsecond (minimum) and after this time the

microcontroller sets OE/DM2 in HIGH state and the output data detection results go to the microprocessor via SDO.

Detection mode and normal mode both use the same data format. As soon as all the detection data bits are available on the serial line, the device may go back to normal mode of operation. To re-detect the status, the device must go back in normal mode and re-enter error detection mode.

Error detection mode functionality

STAP16DPPS05

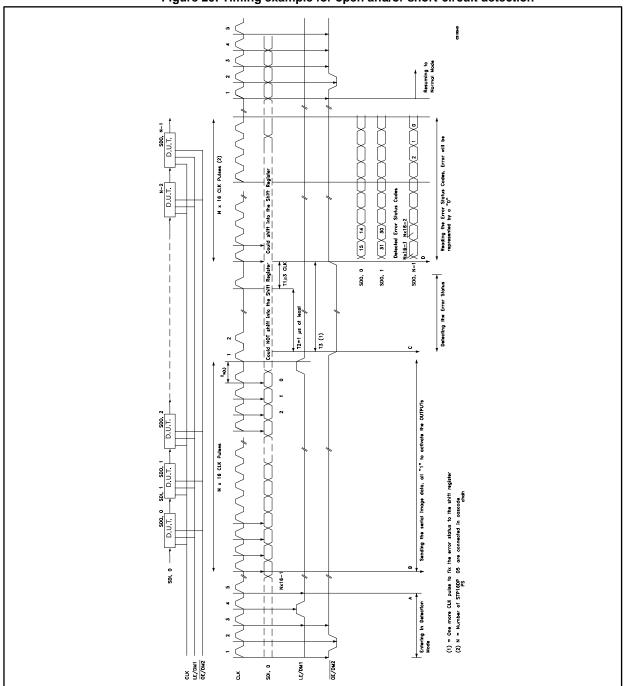


Figure 20: Timing example for open and/or short-circuit detection

7.3 Phase three: resuming normal mode

The sequence for re-entering normal mode is shown in the following table:

CLK	1°	2 °	3°	4 °	5°
OE/DM2	н	L	н	н	н
LE/DM1	L	L	L	L	L

Table 14: Resuming normal mode - timing diagram

For proper device operation, the "entering error detection" sequence must be followed by a "resume mode" sequence, it is not possible to insert consecutive equal sequences.

7.4 Error detection conditions

Table 15: Detection conditions (VDD = 3.3 to 5 V, temperature range -40 to 125 °C)

Configuration	Detect mode	Detection results		ts
SW-1 or SW-3b	Open line or output short to GND detected	==> l _{ODEC} ≤ 0.5 x l _O	No error detected	==> I _{ODEC} ≥ 0.5 x I _O
SW-2 or SW-3a	Short on LED or short to V- LED detected	==> V₀ ≥ 2.6 V	No error detected	==> V₀ ≤ 2.3 V

Where: I_0 = the output current programmed by the R_{EXT}, I_{ODEC} = the detected output current in detection mode.

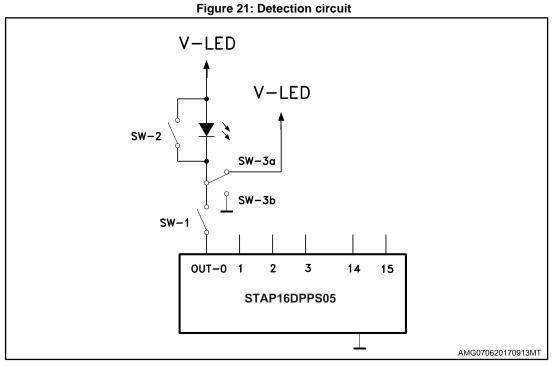
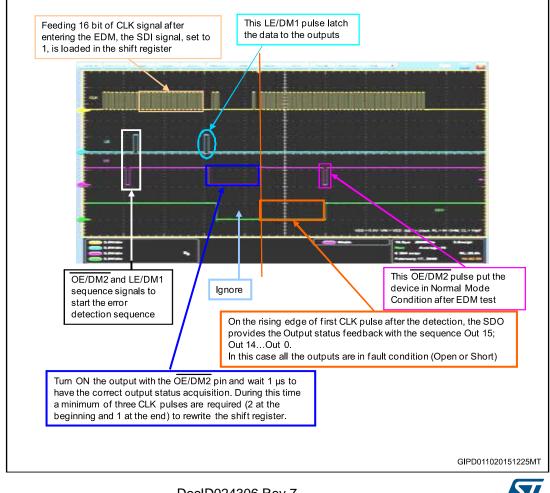
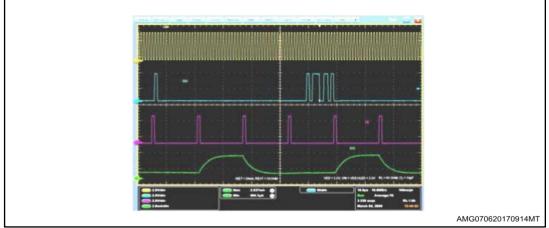



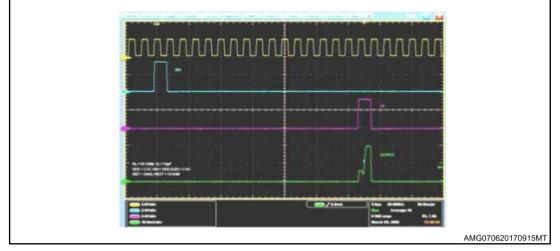
Figure 22: Error detection sequence



7.5 Auto power-saving

The auto power-saving feature minimizes the quiescent current if no active data is detected on the latches and auto powers-up the device as the first active data is latched.

Figure 23: Auto power-saving feature


Conditions:

- Temp. = 25 °C, V_{DD} = 3.3 V, Vin = V_{DD}, VLed = 3.0 V, Iset = 20 mA
- Ch1 (yellow) = CLK, Ch2 (blue) = SDI, Ch3 (purple) = LE/DM1, Ch4 (green) = IDD

Idd consumption:

- Idd (normal operation) = 2.93 mA
- Idd (shutdown condition) = 170 μA

Figure 24: Auto power-saving feature: first output TON

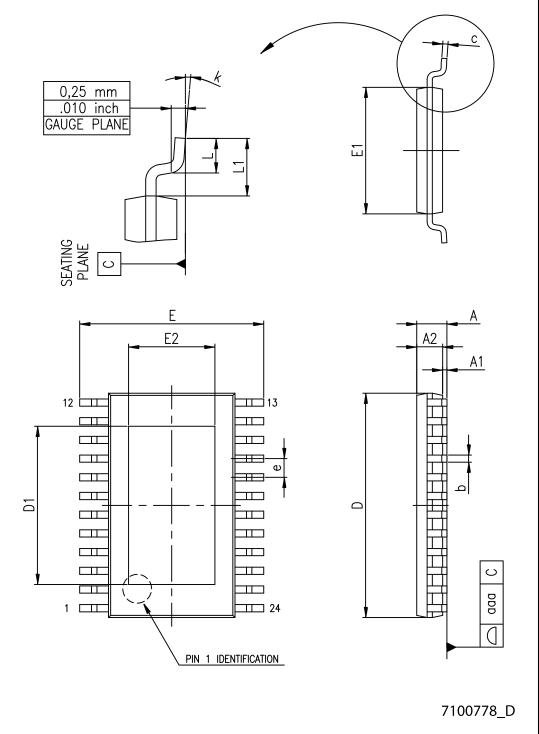
Conditions:

- Temp. = 25 °C, V_{DD} = 3.3 V, Vin = V_{DD}, VLed = 3.0 V, Iset = 20 mA
- Ch1 (yellow) = CLK, Ch2 (blue) = SDI, Ch3 (purple) = LE/DM1, Ch4 (green) = IDD

When the device goes from auto power-saving to normal operating condition, the first output switching ON shows the T_{ON} condition as seen in the plot above.

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

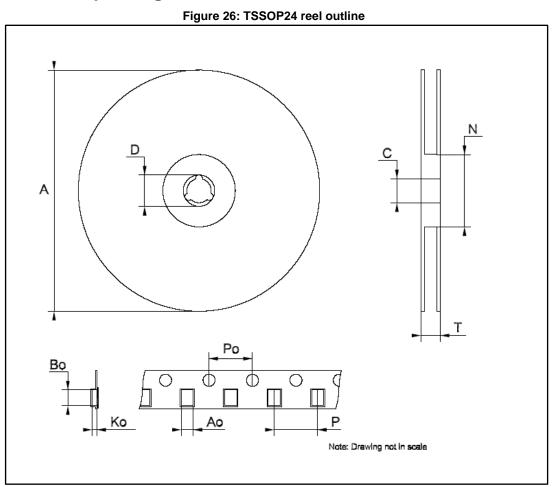


8.1

57

TSSOP24 exposed pad package information

Package information


Table 16: TSSOP24 exposed pad mechanical data

STAP16DPPS05

Table 16: ISSOP24 exposed pad mechanical data				
Dim.		mm		
Dini.	Min.	Тур.	Max.	
A			1.20	
A1			0.15	
A2	0.80	1.00	1.05	
b	0.19		0.30	
с	0.09		0.20	
D	7.70	7.80	7.90	
D1	4.80	5.00	5.2	
E	6.20	6.40	6.60	
E1	4.30	4.40	4.50	
E2	3.00	3.20	3.40	
е		0.65		
L	0.45	060	0.75	
L1		1.00		
k	0°		8°	
aaa			0.10	

8.2 TSSOP24 packing information

Table 17: TSSOP24 tape and reel mechanical data						
Dim.	mm					
Dini.	Min.	Тур.	Max.			
A		-	330			
С	12.8	-	13.2			
D	20.2	-				
N	60	-				
Т		-	22.4			
Ao	6.8	-	7			
Во	8.2	-	8.4			
Ko	1.7	-	1.9			
Po	3.9	-	4.1			
Р	11.9	-	12.1			

9 Revision history

Table 18: Document revision history

Date	Revision	Changes
21-May-2013	1	Initial release.
01-Jul-2013	2	Added footnote in Table 8: Switching characteristics.
11-Oct-2013	3	Modified TOPR value in Table 4: Absolute maximum ratings.
10-Mar-2014	4	Modified footnote 1 in Table 8: Switching characteristics. Added footnote 2 in Table 8: Switching characteristics. Updated Table 1: Pin connections and Table 3: Pin description.
05-Jun-2014	5	Updated Table 16: TSSOP24 exposed pad mechanical data. Minor text changes.
10-Nov-2015	6	Updated features in cover page. Minor text changes.
07-Nov-2017	7	Updated title in cover page. Updated Figure 5: "SDO terminal", Figure 8: "Clock, serial-in, serial- out", Figure 9: "Clock, serial-in, latch, enable, outputs" and Section 8: "Package information". Minor text changes.

STAP16DPPS05

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LED Display Drivers category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

AS3693B-ZTQT SCT2027CSSG ME2206AM6G WS3130S8P WS3132S7P WS3136D7P WS3256D8P WS3418AD7P WS9012S8P WS9620BDP FM6126QC TC7559C FM6565QB LYT3315D SCT2001ASIG SCT2024CSOG SCT2024CSSG SCT2167CSSG PR4401 PR4403 STP16CPC05XTTR WS2821B PR4402 RT8471GJ5 RT9284A-20GJ6E LP5562TMX TC7117ACLW DLD101Q-7 WS2818B SCT2004CSOG SCT2026CSOG SCT2026CSTG SCT2110CSSG LM3429MH PR4101A PR4404 AS1130-BSST CP2155DN10-A1 BCT3220ELA-TR AW2013DNR AW3641EDNR AW2023DNR WD3153D-10/TR LP3321QVF AW36404DNR AL8400SE-7 CD4511BE XD3914 MAX7219N XD7221