STD100N10LF7AG

Automotive-grade N-channel $100 \mathrm{~V}, 5 \mathrm{~m} \Omega$ typ., 80 A STripFET ${ }^{\text {тм }}$ F7 Power MOSFET in a DPAK package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V $_{\text {DS }}$	$\mathbf{R D S}_{\text {D(on) }}$ max.	$\mathbf{I D}_{\mathbf{D}}$
STD100N10LF7AG	100 V	$9 \mathrm{~m} \Omega$	80 A

- Designed for automotive applications and

AEC-Q101 qualified

- Among the lowest RDS(on) on the market
- Excellent FoM (figure of merit)
- Low $\mathrm{C}_{\text {rss }} / \mathrm{C}_{\text {iss }}$ ratio for EMI immunity
- High avalanche ruggedness

Applications

- Switching applications

Description

This N-channel Power MOSFET utilizes STripFET ${ }^{\text {TM }}$ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STD100N10LF7AG	100N10LF7	DPAK	Tape and reel

Contents

1 Electrical ratings 3
2 Electrical characteristics 4
2.1 Electrical characteristics (curves) 6
3 Test circuits 8
4 Package information 9
4.1 DPAK (TO-252) type A2 package mechanical data 10
4.2 DPAK (TO-252) packing information 13
5 Revision history 15

1

Electrical ratings
Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	100	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate-source voltage	± 20	V
	Drain current (continuous) at $\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$	80	A
	Drain current (continuous) at $\mathrm{T}_{\text {case }}=100^{\circ} \mathrm{C}$	59	
$\mathrm{P}_{\mathrm{TOT}}$	Drain current (pulsed)	${\text { Total dissipation at } \mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}}^{\mathrm{C}}$	320
$\mathrm{E}_{\mathrm{AS}}{ }^{(3)}$	Single pulse avalanche energy	125	W
$\mathrm{~T}_{\text {stg }}$	Storage temperature range	200	mJ
$\mathrm{~T}_{\mathrm{j}}$	Operating junction temperature range	-55 to 175	${ }^{\circ} \mathrm{C}$

Notes:

${ }^{(1)}$ Drain current is limited by package, the current capability of the silicon is 84 A at $25^{\circ} \mathrm{C}$.
${ }^{(2)}$ Pulse width is limited by safe operating area.
${ }^{(3)} \mathrm{T}_{\mathrm{j}} \leq 25^{\circ} \mathrm{C}, \mathrm{ID}=40 \mathrm{~A}, \mathrm{VDD}=60 \mathrm{~V}$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\mathrm{th} \mathrm{j}-\text { case }}$	Thermal resistance junction-case	1.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th} \mathrm{h}-\mathrm{pcb}}{ }^{(1)}$	Thermal resistance junction-pcb	50	

Notes:

${ }^{(1)}$ When mounted on a 1 -inch² FR-4 board, $20 z \mathrm{Cu}$.

2 Electrical characteristics

($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified).
Table 4: Static

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {(BR) }}$ DSs	Drain-source breakdown voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{ld}=250 \mu \mathrm{~A}$	100			V
Idss	Zero gate voltage drain current	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=100 \mathrm{~V}$			1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=100 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}{ }^{(1)} \end{aligned}$			10	
IgSs	Gate-body leakage current	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			± 100	nA
$\mathrm{VGSS}_{\text {(th) }}$	Gate threshold voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	1		2.5	V
$\mathrm{R}_{\text {DS(on) }}$	Static drain-source on-resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=40 \mathrm{~A}$		5	9	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{ID}=40 \mathrm{~A}$		7	11	

Notes

${ }^{(1)}$ Defined by design, not subject to production test

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
Ciss	Input capacitance	$\begin{aligned} & \mathrm{VDS}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{VGS}=0 \mathrm{~V} \end{aligned}$	-	4000	-	pF
Coss	Output capacitance		-	1500	-	
Crss	Reverse transfer capacitance		-	135	-	
Q_{g}	Total gate charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$ (see Figure 14: "Test circuit for gate charge behavior")	-	73	-	nC
$\mathrm{Qgs}^{\text {s }}$	Gate-source charge		-	14	-	
$Q_{g d}$	Gate-drain charge		-	20	-	

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
td(on)	Turn-on delay time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{ID}=40 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$ (see Figure 13: "Test circuit for resistive load switching times")	-	20	-	ns
tr_{r}	Rise time		-	10	-	
$\mathrm{td}_{\text {(off) }}$	Turn-off delay time		-	60	-	
tf_{f}	Fall time			16		

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{ISD}^{(1)}$	Source-drain current		-		80	A
ISDM ${ }^{(2)}$	Source-drain current (pulsed)		-		320	A
$\mathrm{V}_{\text {SD }}{ }^{(3)}$	Forward on voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{ISD}=80 \mathrm{~A}$	-		1.2	V
$t_{\text {rr }}$	Reverse recovery time	$\begin{aligned} & \mathrm{ISD}=80 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{VDD}=80 \mathrm{~V} \end{aligned}$ (see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	62		ns
Qrr	Reverse recovery charge		-	90		nC
IRRM	Reverse recovery current		-	3		A

Notes:

${ }^{(1)}$ Drain current is limited by package, the current capability of the silicon is 84 A at $25^{\circ} \mathrm{C}$.
${ }^{(2)}$ Pulse width limited by safe operating area.
${ }^{(3)}$ Pulse test: pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%.

2.2 Electrical characteristics (curves)

Figure 4: Output characteristics

Figure 5: Transfer characteristics

Figure 6: Gate charge vs gate-source voltage

Figure 7: Static drain-source on-resistance

Figure 10: Normalized on-resistance vs temperature

Figure 11: Normalized $\mathbf{V}_{\text {(BR)Dss }}$ vs temperature

Figure 12: Source-drain diode forward characteristics

3 Test circuits

Figure 15: Test circuit for inductive load switching and diode recovery times

Figure 16: Unclamped inductive load test circuit

Figure 17: Unclamped inductive waveform

Figure 18: Switching time waveform

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

4.1 DPAK (TO-252) type A2 package mechanical data

Figure 19: DPAK (TO-252) type A2 package outline

Dim.	mm		
	Min.	Typ.	Max.
A	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
c	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
E	6.40		6.60
E1	5.10	5.20	5.30
e	2.16	2.28	2.40
e1	4.40		4.60
H	9.35		10.10
L	1.00		1.50
L1	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

Figure 20: DPAK (TO-252) recommended footprint (dimensions are in mm)

4.2 DPAK (TO-252) packing information

Figure 21: DPAK (TO-252) tape outline

Figure 22: DPAK (TO-252) reel outline

Table 9: DPAK (TO-252) tape and reel mechanical data

Tape				Reel		
Dim.	$\mathbf{m m}$		Dim.	mm		
	Min.	Max.		Min.	Max.	
A0	6.8	7	A		330	
B0	10.4	10.6	B	1.5		
B1		12.1	C	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
E	1.65	1.85	N	50		
F	7.4	7.6	T		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1				
R	40					
T	0.25	0.35				
W	15.7	16.3				

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
06-Jun-2016	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 SPP20N60S5XK FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF

