

STD100N3LF3

N-channel 30 V, 0.0045 Ω 80 A, DPAK planar STripFET™ II Power MOSFET

Features

Туре	v_{DSSS}	R _{DS(on)}	I _D	Pw
STD100N3LF3	30 V	<0.0055 Ω	80 A ⁽¹⁾	110 W

- 1. Current limited by package
- 100% avalanche tested
- Logic level threshold

Applications

- Switching application
 - Automotive

This STripFET™ II Power MOSFET technology is among the latest improvements, which have been especially tailored to minimize on-state resistance providing superior switching performance.

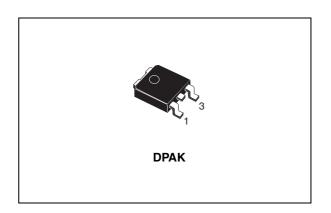


Figure 1. Internal schematic diagram

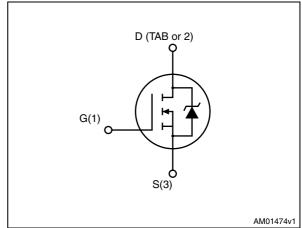


Table 1. Device summary

Order codes	Marking	Package	Packaging
STD100N3LF3	100N3LF3	DPAK	Tape and reel

Contents STD100N3LF3

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data	. 10
5	Packaging mechanical data	. 13
6	Revision history	. 14

STD100N3LF3 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	30	V
V _{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	80	Α
I _D	Drain current (continuous) at T _C =100 °C	70	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	320	Α
P _{TOT}	Total dissipation at $T_C = 25$ °C	110	W
	Derating factor	0.73	W/°C
dv/dt (3)	Peak diode recovery voltage slope	3.9	V/ns
T _{stg}	Storage temperature	-55 to 175	°C
T_J	Max. operating junction temperature	55 to 175	

- 1. Current limited by package.
- 2. Pulse width limited by safe operating area
- 3. $I_{SD} \leq 80A$, di/dt ≤ 360 A/ μ s, $V_{DS} \leq V_{(BR)DSS}$, $T_{J} \leq T_{JMAX}$

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance junction-case max	1.36	°C/W
R _{thJA}	Thermal resistance junction-ambient max	100	°C/W
T _I	Maximum lead temperature for soldering purpose	275	°C

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Not-repetitive avalanche current (pulse width limited by T _J max)	40	Α
E _{AS}	Single pulsed avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AV}$, $V_{DD} = 24$ V)	500	mJ

Electrical characteristics STD100N3LF3

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250 \ \mu\text{A}, \ V_{GS} = 0$	30			٧
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = Max rating, V _{DS} = Max rating @125 °C			1 10	μ Α μ Α
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ±20 V			±200	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1		2.5	V
		$V_{GS} = 10 \text{ V}, I_D = 40 \text{ A}$ $V_{GS} = 5 \text{ V}, I_D = 20 \text{ A}$		0.0045 0.008	0.0055 0.01	Ω
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 40 A @125 °C V _{GS} = 5 V,		0.0068		Ω
		I _D = 20 A @ 125 °C		0.0146		Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} (1)	Forward transconductance	V _{DS} = 10 V _, I _D = 15 A	-	31		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	-	2060 728 67		pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 24 V, I_{D} = 80 A V_{GS} = 5 V Figure 16 on page 9	-	20 7 7.5	27	nC nC nC
R _G	Gate input resistance	f = 1 MHz gate DC Bias = 0 test signal level = 20 mV open drain	-	1.9		Ω

^{1.} Pulsed: pulse duration=300µs, duty cycle 1.5%

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	V_{DD} = 15 V, I_{D} = 40 A, R_{G} =4.7 Ω , V_{GS} =10 V Figure 15 on page 9	-	9 205 31 35	-	ns ns ns ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD}	Source-drain current		-		80	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		320	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 40 A, V _{GS} = 0	-		1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 80 \text{ A},$ di/dt = 100 A/ μ s, $V_{DD} = 25 \text{ V}, T_{J} = 150 ^{\circ}\text{C}$ Figure 17 on page 9	-	40 40 2		ns µC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration=300µs, duty cycle 1.5%

Electrical characteristics STD100N3LF3

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

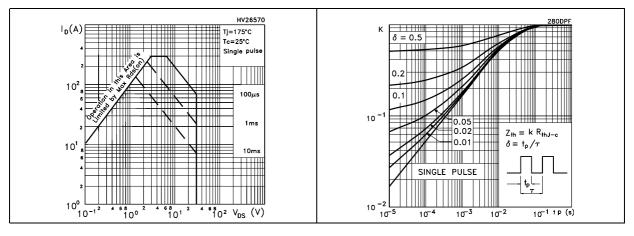


Figure 4. Output characteristics

Figure 5. Transfer characteristics

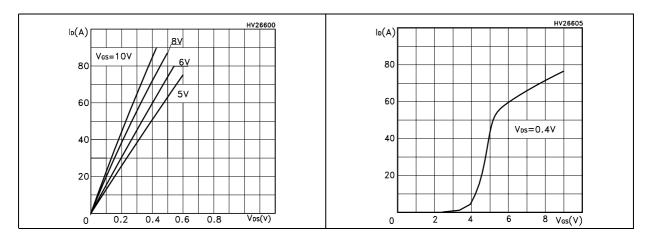


Figure 6. Transconductance

6/14

Figure 7. Static drain-source on resistance

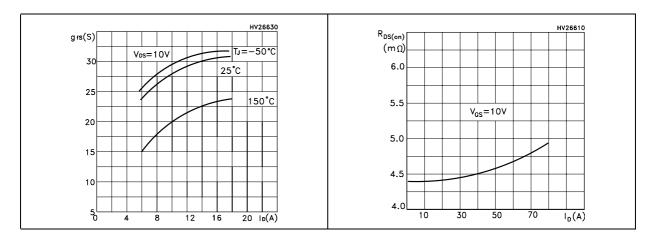


Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

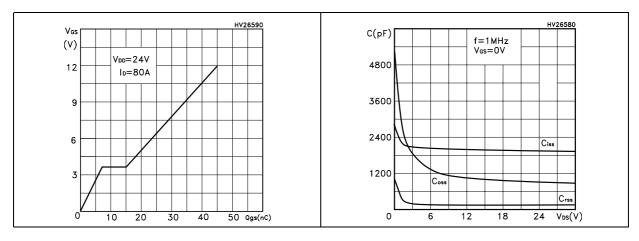
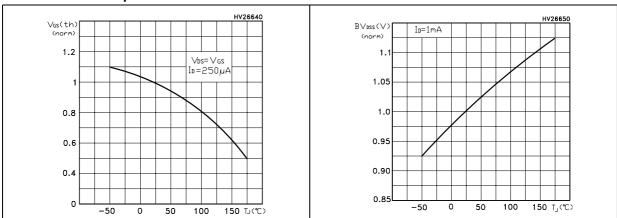
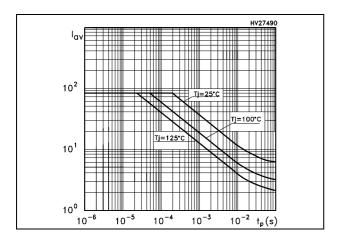


Figure 10. Normalized gate threshold voltage Figure 11. Normalized BV_{DSS} vs temperature vs temperature




Figure 12. Normalized on resistance vs temperature

characteristics HV26620 HV26660 VsD Ros(on) (norm) 1.1 2.2 Tj=-50°C 1.0 25°C 0.9 1.4 175℃ Vgs= 10V 1.0 0.8 0.6 0.7 0.6L 0 100 -50 0 50 150 TJ(℃) 30 60 90 (A)dzI

Figure 13. Source-drain diode forward

Electrical characteristics STD100N3LF3

Figure 14. Allowable lav vs time in avalanche

The previous curve gives the single pulse safe operating area for unclamped inductive loads, under the following conditions:

$$P_{D(AVE)} = 0.5 * (1.3 * BV_{DSS} * I_{AV})$$

$$E_{AS(AR)} = P_{D(AVE)} * t_{AV}$$

Where:

I_{AV} is the allowable current in avalanche

 $P_{D(AVE)}$ is the average power dissipation in avalanche (single pulse)

t_{AV} is the time in avalanche

STD100N3LF3 Test circuits

3 Test circuits

Figure 15. Switching times test circuit for resistive load

Figure 16. Gate charge test circuit

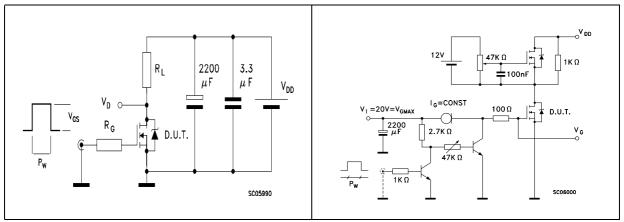
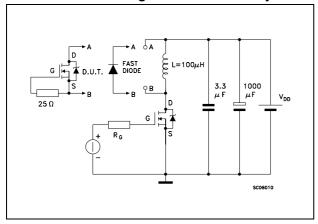
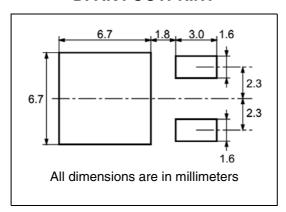



Figure 17. Test circuit for inductive load switching and diode recovery times

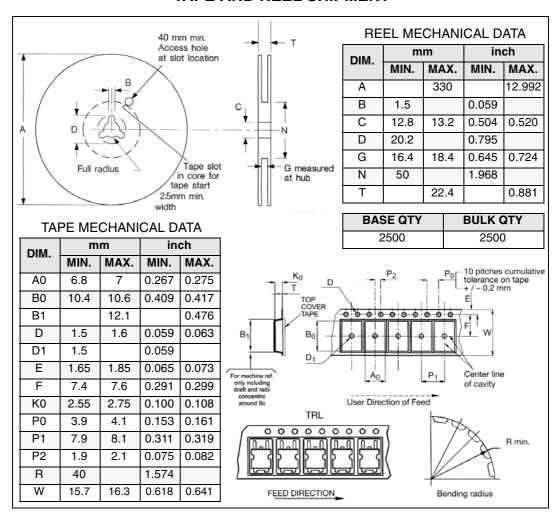
4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

10/14 Doc ID 13206 Rev 3


TO-252 (DPAK) mechanical data

DIM.	mm.		
	min.	typ	max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
E	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1		
L1		2.80	
L2		0.80	
L4	0.60		1
R		0.20	
V2	0 °		8 °



5 Packaging mechanical data

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

STD100N3LF3 Revision history

6 Revision history

Table 9. Document revision history

Date	Revision	Changes
07-Feb-2006	1	Initial release.
07-May-2009	2	Added V _{GS(th)} max value in <i>Table 5: On/off states</i>
09-Nov-2009	3	Added V _{GS} parameter in <i>Table 2: Absolute maximum ratings</i>

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

14/14 Doc ID 13206 Rev 3

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7