

STD19N3LLH6AG

Automotive-grade N-channel 30 V, 25 mΩ typ., 10 A STripFET™ H6 Power MOSFET in a DPAK package

Datasheet - production data

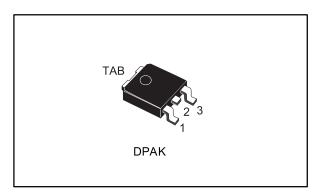
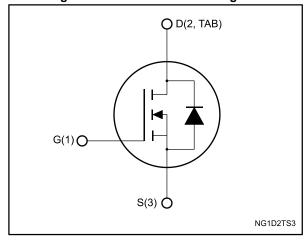



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D	Ртот
STD19N3LLH6AG	30 V	33 mΩ	10 A	30 W

- Designed for automotive applications and AEC-Q101 qualified
- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss
- Logic level

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using the STripFET™ H6 technology with a new trench gate structure. The resulting Power MOSFET exhibits very low R_{DS(on)} in all packages.

Table 1: Device summary

Order code	Marking	Package	Packing
STD19N3LLH6AG	19N3LLH6	DPAK	Tape and reel

Contents STD19N3LLH6AG

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	DPAK (TO-252) type A package information	9
	4.2	DPAK (TO-252) packing information	12
5	Revisio	n history	14

STD19N3LLH6AG Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	30	V
V_{GS}	Gate-source voltage	±20	V
	Drain current (continuous) at T _{case} = 25 °C ⁽¹⁾	10	Δ
I _D	Drain current (continuous) at T _{case} = 100 °C	10	A
I _{DM} ⁽²⁾	Drain current (pulsed)	40	Α
Ртот	Total dissipation at T _{case} = 25 °C	30	W
T _{stg}	Storage temperature	55 to 175	°C
Tj	Operating junction temperature	-55 to 175	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	5	۰۵۸۸۷
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	°C/W

Notes:

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AV} ⁽¹⁾	Avalanche current, repetitive or not repetitive	10	Α
E _{AS} ⁽²⁾	Single pulse avalanche energy	130	mJ

Notes:

 $^{^{(1)}}$ Current limited by package. At T_{case} = 25 $^{\circ}$ C the silicon is able to sustain 22 A.

⁽²⁾ Pulse width limited by safe operating area.

⁽¹⁾When mounted on a 1-inch² FR-4, 2 Oz copper board.

 $^{^{\}left(1\right)}$ Pulse width limited by $T_{jmax}.$

 $^{^{(2)}}$ starting T_j = 25 °C, I_D = $I_{AV},\,V_{DD}$ = 25 V.

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30			V
I _{DSS} Zero gate voltage drain current	Zara gata valtaga drain	$V_{GS} = 0 \text{ V}, V_{DS} = 30 \text{ V}$			1	μΑ
	V _{GS} = 0 V, V _{DS} = 30 V, T _{case} = 125 °C			100	μΑ	
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1		2.5	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, I_D = 5 \text{ A}$		25	33	mΩ
		V _{GS} = 4.5 V, I _D = 5 A		33	50	11122

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	321	ı	
Coss	Output capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz},$	-	68	ı	pF
Crss	Reverse transfer capacitance	Ves = 0 V	-	34	ı	Pi
Q_g	Total gate charge	$V_{DD} = 15 \text{ V}, I_D = 10 \text{ A},$	-	3.7	ı	
Q _{gs}	Gate-source charge	V _{GS} = 4.5 V (see Figure 14: "Test circuit for gate charge	-	1	ı	nC
Q_{gd}	Gate-drain charge	behavior")	-	1.7	-	

Table 7: Switching times

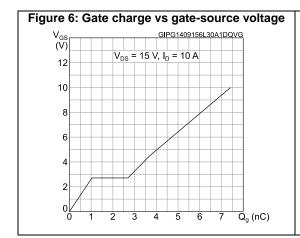
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Uni t
t _{d(on)}	Turn-on delay time	V _{DD} = 15 V, I _D = 5 A	-	2.4	-	
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit for	-	2.5	-	
t _{d(off)}	Turn-off delay time	resistive load switching times"	-	12.8	-	ns
t _f	Fall time	and Figure 18: "Switching time waveform")	-	2.5	-	

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		ı		10	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		1		40	А
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 10 A	ı		1.12	V
t _{rr}	Reverse recovery time	I _{SD} = 10 A, di/dt = 100 A/µs,	ı	15.1		ns
Qrr	Reverse recovery charge	V _{DD} = 24 V (see Figure 15: "Test circuit for inductive load	-	7.5		nC
IRRM	Reverse recovery current	switching and diode recovery times")	-	1		А

Notes:

⁽¹⁾ Pulse width is limited by safe operating area.


 $^{^{(2)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

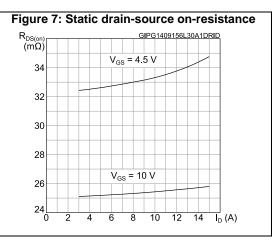
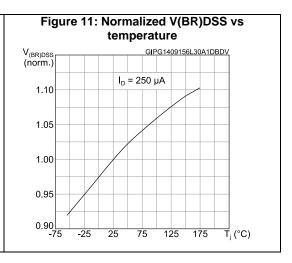
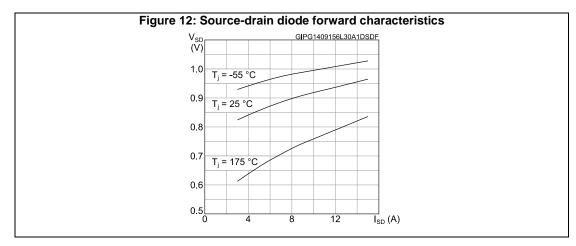

2.1 Electrical characteristics (curves)

Figure 2: Safe operating area [Ib] GIPG1409156L30A1DSOA (A) Operation in this area is limited by $R_{DS(en)}$ 100 μ s 1 ms 1 ms 1 ms 10 ms 10° 10° 10° $V_{DS}(V)$

Figure 3: Thermal impedance K GIPG1409156L30A1DZTH δ =0.5 δ =0.2 δ =0.01 δ =0.02 δ =0.01 δ =0.01 δ =10.7 δ =10.7 δ =10.4 δ =10.3 δ =10.2 δ (s)

Figure 4: Output characteristics GIPG1409156L30A1DOCH V_{GS} = 8,9,10 V 50 $V_{GS} = 7 V$ $V_{GS} = 6 V$ 40 $V_{GS} = 5 V$ 30 20 $V_{GS} = 4 V$ 10 $V_{GS} = 3 V$ 2.5 0.5 1.0 1.5 2.0

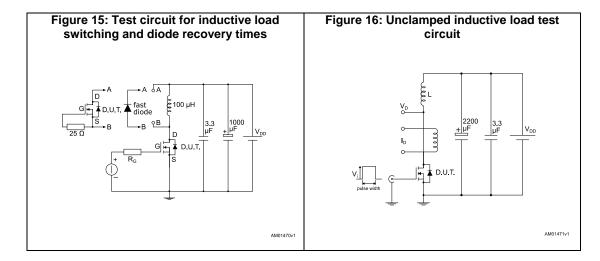

STD19N3LLH6AG Electrical characteristics

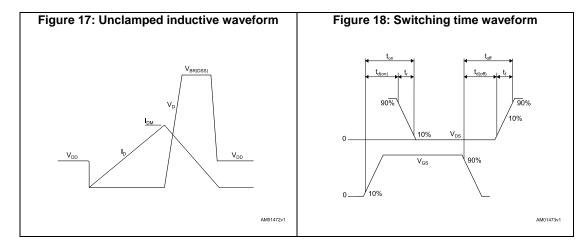

Figure 8: Capacitance variations

C
(pF)

C
(p

Figure 9: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GIPG1409156L30A1DVTH I_D = 250 μA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 -75 175 25 75 125 T_i (°C)





Test circuits STD19N3LLH6AG

3 **Test circuits**

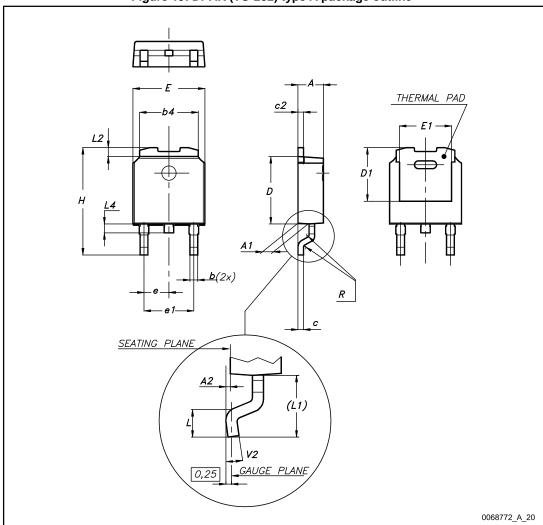
Figure 13: Test circuit for resistive load Figure 14: Test circuit for gate charge switching times behavior ⊥ 100 nF 2200 µF I_G= CONST 2.7 kΩ 47 kΩ

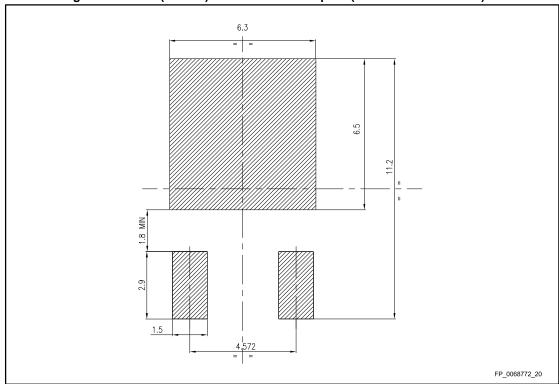
1 kΩ

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 DPAK (TO-252) type A package information




Figure 19: DPAK (TO-252) type A package outline

10/15

Table 9: DPAK (TO-252) type A mechanical data

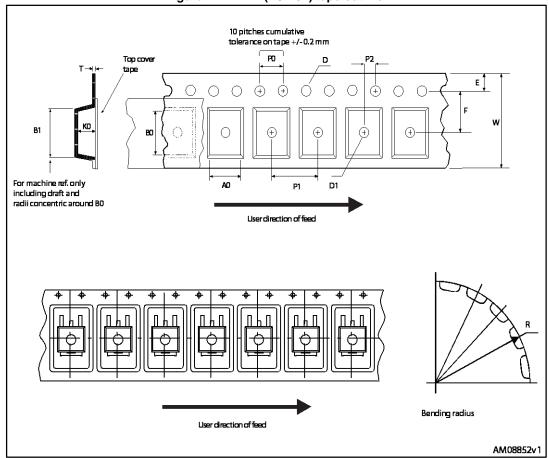

	Table 3. DI AR (10-232		- -
Dim.		mm	
Diiii.	Min.	Тур.	Max.
A	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
E	6.40		6.60
E1	4.60	4.70	4.80
е	2.16	2.28	2.40
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

Figure 20: DPAK (TO-252) recommended footprint (dimensions are in mm)

4.2 DPAK (TO-252) packing information

Figure 21: DPAK (TO-252) tape outline

40mm min. access hole at slot location С Ν Α G measured Tape slot at hub in core for Full radius tape start 2.5mm min.width

Figure 22: DPAK (TO-252) reel outline

Table 10: DPAK (TO-252) tape and reel mechanical data

Table 10. DFAR (10-232) tape and reel mechanical data					
Таре				Reel	
Dim.	n	nm	Dim.	r	nm
Dilli.	Min.	Max.	Diiii.	Min.	Max.
A0	6.8	7	Α		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base	e qty.	2500
P1	7.9	8.1	Bulk	qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

AM06038v1

Revision history STD19N3LLH6AG

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
01-Oct-2015	1	Initial version
13-Oct-2015	2	On cover page: - updated title In section Electrical characteristics: - updated table Dynamic Updated section Test circuits

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B