life. augmented

STD20NF10T4

N-channel 100 V, 0.038Ω typ., 25 A STripFET ${ }^{\text {TM }}$ II Power MOSFET in a DPAK package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V $_{\text {DS }}$	RDS(on) max.	ID $^{\text {m }}$
STD20NF10T4	100 V	0.045Ω	25 A

- Exceptional dv/dt capability
- Application oriented characterization

Applications

- Switching applications

Description

This Power MOSFET series realized with STMicroelectronics unique STripFET ${ }^{\text {TM }}$ process is specifically designed to minimize input capacitance and gate charge. It is therefore ideal as a primary switch in advanced high-efficiency isolated DC-DC converters for Telecom and Computer applications. It is also suitable for any application with low gate charge drive requirements.

Table 1: Device summary

Order code	Marking	Package	Packing
STD20NF10T4	D20NF10	DPAK	Tape and reel

Contents

1 Electrical ratings 3
2 Electrical characteristics 4
2.1 Electrical characteristics (curves) 6
3 Test circuits 8
4 Package information 9
4.1 DPAK (TO-252) type A package information 9
4.2 DPAK (TO-252) type C package information 11
4.3 DPAK (TO-252) packing information 14
5 Revision history 16

Electrical ratings
Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
VDS	Drain-source voltage	100	V
V ${ }_{\text {dgr }}$	Drain-gate voltage ($\mathrm{RGS}^{\text {a }}=20 \mathrm{k} \Omega$)	100	V
V_{GS}	Gate-source voltage	± 20	V
ID	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	25	A
ID	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=10{ }^{\circ} \mathrm{C}$	21	A
$\mathrm{IDM}^{(1)}$	Drain current (pulsed)	100	A
$\mathrm{P}_{\text {TOT }}$	Total dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	85	W
$\mathrm{EAS}^{(2)}$	Single pulse avalanche energy	300	mJ
$\mathrm{dv} / \mathrm{dt}{ }^{(3)}$	Peak diode recovery voltage slope	20	V/ns
T_{j}	Operating junction temperature range	- 55 to 175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range		

Notes:

${ }^{(1)}$ Pulse width limited by safe operating area.
${ }^{(2)}$ Starting $T_{J}=25^{\circ} \mathrm{C}, I_{D}=10 \mathrm{~A}, \mathrm{~V}_{D D}=27 \mathrm{~V}$.
${ }^{(3)}{ }_{\text {ISD }} \leq 25 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 300 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS},} \mathrm{T}_{\mathrm{J}} \leq$ TJMAX.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case	1.76	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thjpcb }}{ }^{(1)}$	Thermal resistance junction-pcb	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:

${ }^{(1)}$ When mounted on 1 inch 2 FR-4, 2 Oz copper board.

2 Electrical characteristics

$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Table 4: On/off-state

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {(BR) }}$ DSS	Drain-source breakdown voltage	$\mathrm{VGS}=0 \mathrm{~V}, \mathrm{ld}=250 \mu \mathrm{~A}$	100			V
Idss	Zero-gate voltage drain current	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=100 \mathrm{~V}$			1	$\mu \mathrm{A}$
		$\begin{aligned} & V_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=100 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}{ }^{(1)} \end{aligned}$			10	$\mu \mathrm{A}$
IGSS	Gate body leakage current	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			± 100	nA
VGS(th)	Gate threshold voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{Gs}}, \mathrm{ld}=250 \mu \mathrm{~A}$	2	3	4	V
RDS(on)	Static drain-source onresistance	$\mathrm{VGS}=10 \mathrm{~V}, \mathrm{ld}=15 \mathrm{~A}$		0.038	0.045	Ω

Notes

${ }^{(1)}$ Defined by design, not subject to production test.

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{gfs}^{(1)}$	Forward transconductance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{ld}=15 \mathrm{~A}$	-	10	-	S
Ciss	Input capacitance	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	1200	-	pF
Coss	Output capacitance		-	180	-	pF
Crss	Reverse transfer capacitance		-	80	-	pF
Q_{g}	Total gate charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=80 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega \end{aligned}$ See Figure 15: "Test circuit for gate charge behavior"		40	55	nC
Q_{gs}	Gate-source charge		-	8	-	nC
$Q_{g d}$	Gate-drain charge		-	15	-	nC

Notes:

${ }^{(1)}$ Pulsed: pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%.

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-on delay time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{ID}=15 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=4.7 \Omega, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$ See Figure 14: "Test circuit for resistive load switching times" and Figure 19: "Switching time waveform"	-	15	-	ns
tr	Rise time		-	40	-	ns
$\mathrm{td}_{\text {(off) }}$	Turn-off delay time		-	45	-	ns
tf	Fall time		-	10	-	ns

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
I_{SD}	Source-drain current		-		30	A
$\mathrm{ISDM}^{(1)}$	Source-drain current (pulsed)		-		120	A
$\mathrm{~V}_{\mathrm{SD}}{ }^{(2)}$	Forward on voltage	$\mathrm{I}_{\mathrm{SD}}=20 \mathrm{~A}, \mathrm{~V}$ GS $=0 \mathrm{~V}$	-		1.3	V
$\mathrm{t}_{\text {rr }}$	Reverse recovery time	$\mathrm{ISD}=30 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S}$, $\mathrm{V}_{\mathrm{DD}}=55 \mathrm{~V}$	-	110		ns
Q_{rr}	Reverse recovery charge	$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ See Figure 16: "Test circuit for inductive load switching and diode recovery times"	-	390		nC
$\mathrm{I}_{\mathrm{RRM}}$	Reverse recovery current	7.5		A		

Notes:

${ }^{(1)}$ Pulse width limited by safe operating area.
${ }^{(2)}$ Pulsed: pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

Figure 5: Transfer characteristics

Figure 6: Transconductance

Figure 4: Output characteristics

Figure 7: Static drain-source on-resistance

Figure 8: Gate charge vs. gate-source voltage

Figure 9: Capacitance variations

Figure 10: Normalized gate threshold voltage vs. temperature

Figure 11: Normalized on-resistance vs. temperature

Figure 12: Source-drain diode forward characteristics

Figure 13: Normalized breakdown voltage vs. temperature

3 Test circuits

Figure 16: Test circuit for inductive load switching and diode recovery times

Figure 17: Unclamped inductive load test circuit

Figure 18: Unclamped inductive waveform

Figure 19: Switching time waveform

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com.
ECOPACK ${ }^{\circledR}$ is an ST trademark.

4.1 DPAK (TO-252) type A package information

Figure 20: DPAK (TO-252) type A package outline

Table 8: DPAK (TO-252) type A mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
c	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95		5.25
E	6.40		6.60
E1	4.60		4.80
e	2.16		2.40
e1	4.40		4.60
H	9.35		10.10
L	1.00		1.50
L1)	2.60		3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R			80
V2	$0 \circ$		

4.2 DPAK (TO-252) type C package information

Figure 21: DPAK (TO-252) type C package outline

Table 9: DPAK (TO-252) type C mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	2.20	2.30	2.38
A1	0.90	1.01	1.10
A2	0.00		0.10
b	0.72		0.85
b4	5.13	5.33	5.46
c	0.47		0.60
c2	0.47		0.60
D	6.00	6.10	6.20
D1	5.25		
E	6.50	6.60	6.70
E1	4.70		
e	2.186	2.286	2.386
H	9.80	10.10	10.40
L	1.40	1.50	1.70
L1	2.90 REF		
L2	0.90		1.25
L3	0.51 BSC		
L4	0.60	0.80	1.00
L6	1.80 BSC		
$\theta 1$	5°	7°	$9{ }^{\circ}$
$\theta 2$	5°	7°	9°
V2	0°		8°

Figure 22: DPAK (TO-252) recommended footprint (dimensions are in mm)

4.3 DPAK (TO-252) packing information

Figure 23: DPAK (TO-252) tape outline

Figure 24: DPAK (TO-252) reel outline

Table 10: DPAK (TO-252) tape and reel mechanical data

Tape			Reel		
Dim.	$\mathbf{m m}$		Dim.	$\mathbf{m m}$	
	Min.	Max.		Min.	Max.
A0	6.8	7	A		330
B0	10.4	10.6	B	1.5	
B1		12.1	C	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	T		22.4
K0	2.55	2.75			
P0	3.9	4.1		Base qty.	2500
P1	7.9	8.1		Bulk qty.	2500
P2	1.9	2.1			
R	40				
T	0.25	0.35			
W	15.7	16.3			

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
06-Apr-2016	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B

