

STD37P3H6AG

Automotive-grade P-channel -30 V, 11 mΩ typ., -49 A STripFET™ H6 Power MOSFET in a DPAK package

Datasheet - production data

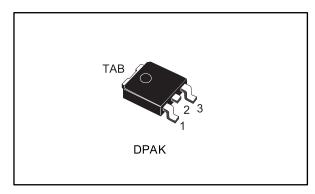
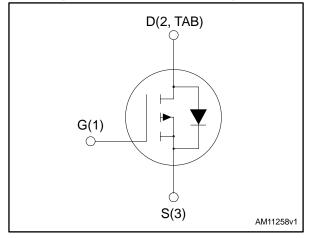



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	Ι _D	Ртот	
STD37P3H6AG	-30 V	15 mΩ	-49 A	60 W	

- Designed for automotive applications and AEC-Q101 qualified
- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss

Applications

Switching applications

Description

This device is a P-channel Power MOSFET developed using the STripFETTM H6 technology with a new trench gate structure. The resulting Power MOSFET exhibits very low $R_{DS(on)}$ in all packages.

Table 1: Device summary

Order code	Marking	Package	Packing
STD37P3H6AG	37P3H6	DPAK	Tape and Reel

Contents STD37P3H6AG

Contents

1	Electrical ratings		
2	Electric	eal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	DPAK (TO-252) type A2 package information	10
	4.2	DPAK (TO-252) packing information	13
5	Revisio	n history	15

STD37P3H6AG Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V_{DS}	Drain-source voltage	-30	V	
V_{GS}	Gate-source voltage	±20	V	
	Drain current (continuous) at T _{CASE} = 25 °C	-49	۸	
ID	Drain current (continuous) at T _{CASE} = 100 °C		Α	
I _{DM} ⁽¹⁾	Drain current (pulsed)	-196	Α	
P _{TOT}	Total dissipation at T _{\${casePCB}} = 25 °C	60	W	
E _{AS} ⁽²⁾	Single pulse avalanche energy	750	mJ	
T _{stg}	Storage temperature			
Tj	Operating junction temperature	-55 to 175	°C	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.5 °C/W	
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50 °C	

Notes:

 $^{^{\}left(1\right) }$ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ starting T_j = 25 °C, I_D = -40 A, V_{DD} = 25 V.

 $^{^{(1)}}$ When mounted on a 1-inch² FR-4, 2 Oz copper board, t < 10 s.

Electrical characteristics STD37P3H6AG

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \text{ mA}$	-30			>
	Zoro goto voltago droin	$V_{GS} = 0 \text{ V}, V_{DS} = -30 \text{ V}$			-1	
I _{DSS}	I _{DSS} Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = -30 \text{ V},$ $T_{CASE} = 125 \text{ °C}$			-10	μΑ
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = -20 V			-100	nA
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	-2		-4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = -10 V, I _D = -25 A		11	15	mΩ

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		ı	1630	ı	
Coss	Output capacitance	$V_{DS} = -25 \text{ V, f} = 1 \text{ MHz,}$	ı	376	ı	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	-	230	-	P.
Qg	Total gate charge	$V_{DD} = -15 \text{ V}, I_{D} = -40 \text{ A}, V_{GS} = -$	ı	30.6	ı	
Q_gs	Gate-source charge	10 V (see Figure 14: "Gate	•	9.7		nC
Q_{gd}	Gate-drain charge	charge test circuit")	1	10	•	

Table 6: Switching times

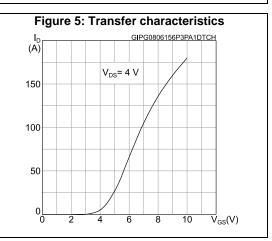
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = -15 V, I _D = -20 A	ı	13.4	ı	
t _r	Rise time	$R_{G} = 4.7 \Omega, V_{GS} = -10 V \text{ (see)}$	-	15.8	-	
t _{d(off)}	Turn-off delay time	Figure 13: "Switching times	-	23.6	-	ns
t _f	Fall time	test circuit for resistive load")	-	9.4	-	

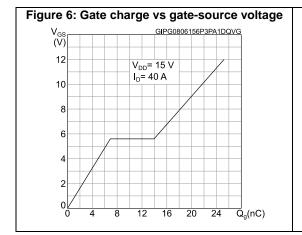
Table 7: Source-drain diode

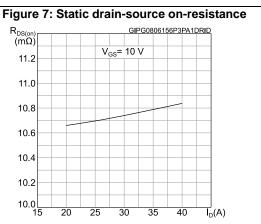
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		-49	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		-196	Α
V _{SD} ⁽²⁾	Forward on voltage	$V_{GS} = 0 \text{ V}, I_{SD} = -40 \text{ A}$	-		-1.3	V
t _{rr}	Reverse recovery time	$I_{SD} = -40 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	25.3		ns
Qrr	Reverse recovery charge	V _{DD} = -24 V (see Figure 15: "Test circuit for inductive load	-	19.2		nC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	-1.5		А

Notes:

 $^{^{\}left(1\right) }$ Pulse width is limited by safe operating area.


⁽²⁾ Pulse test: pulse duration = 300 μ s, duty cycle 1.5%.


2.1 Electrical characteristics (curves)



For the P-channel Power MOSFET, current and voltage polarities are reversed

Figure 3: Thermal impedance K GIPG0806156P3PA1DZTH δ =0.5 δ =0.05 δ =0.01 δ =0.01 δ =0.02 δ =0.01 δ =0.01 δ Single pulse δ =0.02 δ =10-1 δ =0.02 δ =0.01 δ =0.02 δ =0.01 δ =0.01 δ =0.01 δ =0.01 δ =0.02 δ =0.01 δ =0.02 δ =0.01 δ =0.01 δ =0.02 δ =0.01 δ =0.03 δ =0.03 δ =0.04 δ =0.05 δ =0.0

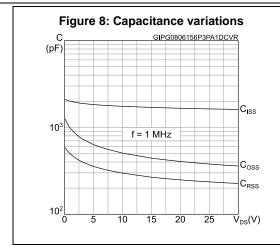


Figure 9: Normalized gate threshold voltage vs temperature

V_{GS(th)} GIPG0806156P3PA1DVTH
(norm.)

1.1

1.0

0.9

0.8

0.7

0.6

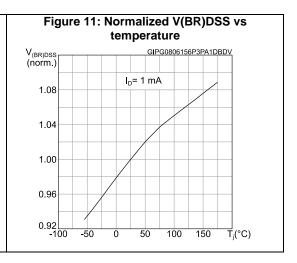
-100 -50 0 50 100 150 T_j(°C)

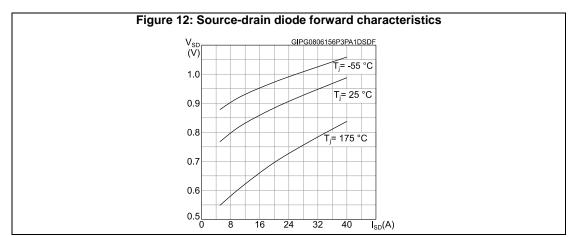
Figure 10: Normalized on-resistance vs temperature

R_{DS(on)} GIPG0806156P3PA1DRON (norm.)

1.6

1.4


1.2

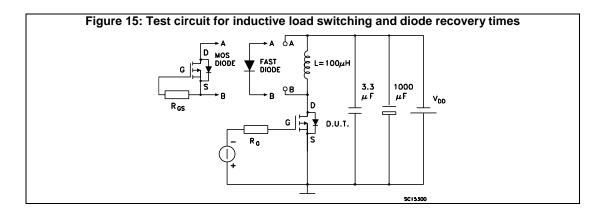

1.0

0.8

0.6

-100 -50 0 50 100 150 T_j(°C)

For the P-channel Power MOSFET, current and voltage polarities are reversed


Test circuits STD37P3H6AG

3 Test circuits

Figure 13: Switching times test circuit for resistive load

Figure 14: Gate charge test circuit

Figure 14: Gate charge test circuit

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of $\mathsf{ECOPACK}^{\otimes}$ packages, depending on their level of environmental compliance. $\mathsf{ECOPACK}^{\otimes}$ specifications, grade definitions and product status are available at: $\mathit{www.st.com}$. $\mathsf{ECOPACK}^{\otimes}$ is an ST trademark.

4.1 DPAK (TO-252) type A2 package information

Figure 16: DPAK (TO-252) type A2 package outline

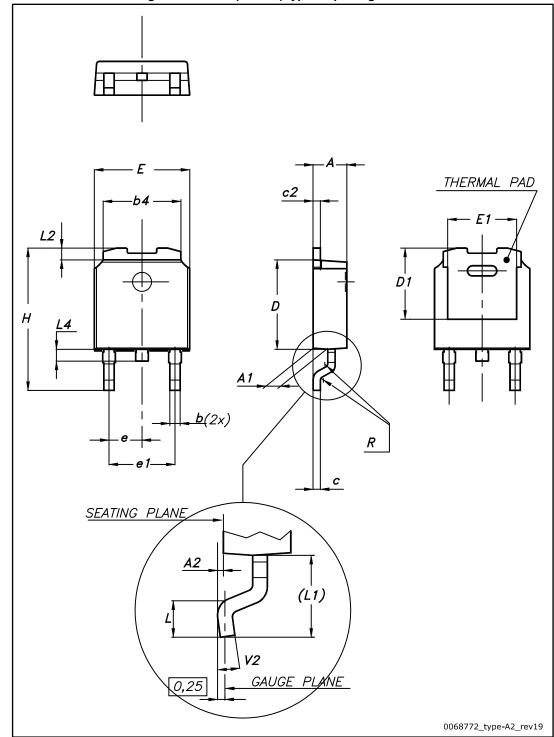


Table 8: DPAK (TO-252) type A2 mechanical data

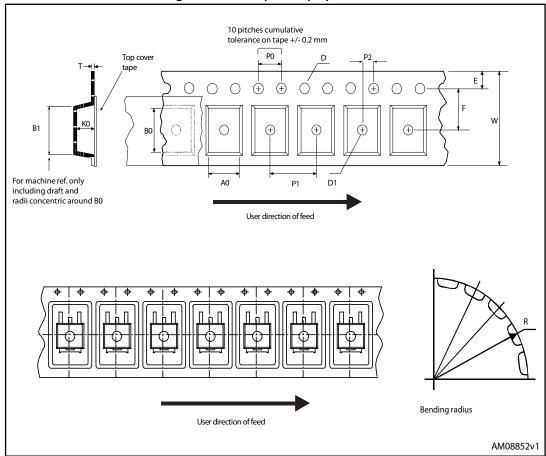

Dim	1450 61 51 711 (10 202	mm	
Dim.	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
E	6.40		6.60
E1	5.10	5.20	5.30
е	2.16	2.28	2.40
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
L1	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

Figure 17: DPAK (TO-252) recommended footprint (dimensions are in mm)

STD37P3H6AG Package information

4.2 DPAK (TO-252) packing information

Figure 18: DPAK (TO-252) tape outline

A 40mm min. access hole at slot location

Tape slot in core for tape start 2.5mm min.width

AM06038v1

Figure 19: DPAK (TO-252) reel outline

Table 9: DPAK (TO-252) tape and reel mechanical data

Table 9. DFAR (10-232) tape and reel mechanical data					
	Tape			Reel	
Dim.	n	nm	Dim.	r	nm
Dilli.	Min.	Max.	Diiii.	Min.	Max.
A0	6.8	7	А		330
B0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base	e qty.	2500
P1	7.9	8.1	Bulk	qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

STD37P3H6AG Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
05-Aug-2015	1	Initial release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7