

Automotive-grade N-channel 60 V, 4.4 mΩ typ., 80 A STripFET™ F6 Power MOSFET in a DPAK package

Datasheet - production data

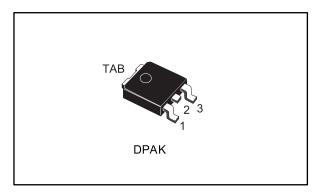
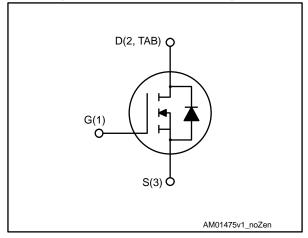



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STD80N6F6	60 V	5 mΩ	80 A

- AEC-Q101 qualified
- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using the STripFET $^{\text{TM}}$ F6 technology with a new trench gate structure. The resulting Power MOSFET exhibits very low $R_{\text{DS(on)}}$ in all packages.

Table 1: Device summary

Order code	Marking Package		Packaging
STD80N6F6	80N6F6 DPAK Tape ar		Tape and reel

Contents STD80N6F6

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e mechanical data	9
	4.1	DPAK (TO-252) type A2 package information	10
	4.2	DPAK (TO-252) tape and reel mechanical data	13
5	Revisio	n history	15

STD80N6F6 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage	60	V	
V_{GS}	Gate-source voltage	±20	V	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	80	Α	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	80	Α	
I _{DM} ⁽²⁾	Drain current (pulsed) 320			
Ртот	Total dissipation at T _C = 25 °C 120			
T _{stg}	Storage temperature range			
Tj	Operating junction temperature range	- 55 to 175		

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.25	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	°C/W

Notes:

⁽¹⁾Current limited by package.

 $^{^{\}left(2\right) }$ Pulse width limited by safe operating area.

 $^{^{(1)}}$ When mounted on a 1-inch² FR-4 board, 2oz Cu.

Electrical characteristics STD80N6F6

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified).

Table 4: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	60			V
	Zoro goto voltago droin	$V_{GS} = 0 \text{ V}, V_{DS} = 60 \text{ V}$			1	μΑ
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 60 \text{ V},$ $T_j = 125 ^{\circ}\text{C} ^{(1)}$			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3		4.5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 40 A		4.4	5	mΩ

Notes:

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		ı	8325	ı	pF
Coss	Output capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz},$	ı	500	ı	pF
Crss	Reverse transfer capacitance	Ves = 0 V	ı	400	ı	pF
Qg	Total gate charge	$V_{DD} = 30 \text{ V}, I_{D} = 80 \text{ A}, V_{GS} = 0$	ı	147	ı	nC
Q_{gs}	Gate-source charge	to 10 V (see Figure 14: "Test circuit for	ı	44	ı	nC
Q_{gd}	Gate-drain charge	gate charge behavior")	-	46	-	nC

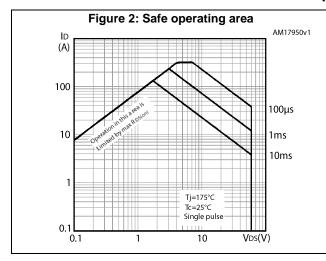
Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 30 \text{ V}, I_D = 40 \text{ A},$	-	40		ns
tr	Rise time	R _G = 4.7 Ω , V _{GS} = 10 V (see Figure 13: "Test circuit for	ı	71	•	ns
t _{d(off)}	Turn-off delay time	resistive load switching times"	1	132	ı	ns
t _f	Fall time	and Figure 18: "Switching time waveform")	1	40	1	ns

⁽¹⁾Defined by design, not subject to production test.

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		ı		80	Α
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		-		320	Α
V _{SD} ⁽³⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 80 A	ı		1.3	V
t _{rr}	Reverse recovery time	$I_{SD} = 80 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	ı	46		ns
Qrr	Reverse recovery charge	$V_{DD} = 48 \text{ V}, T_j = 150 ^{\circ}\text{C}$ (see Figure 15: "Test circuit for	-	65		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	2.8		Α


Notes:

⁽¹⁾ Current limited by package.

 $^{^{\}left(2\right) }$ Pulse width limited by safe operating area.

 $^{^{(3)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

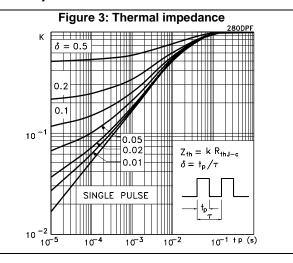
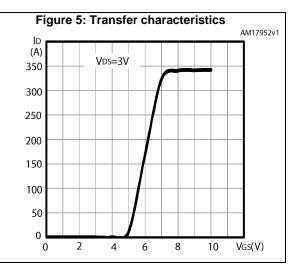
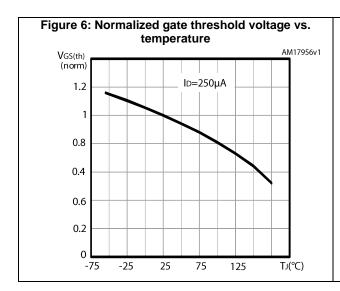




Figure 4: Output characteristics AM17951v1 ID(A) VGS=8, 9, 10V 350 300 250 200 150 100 50 5V 2 6 8 VDs(V) 0

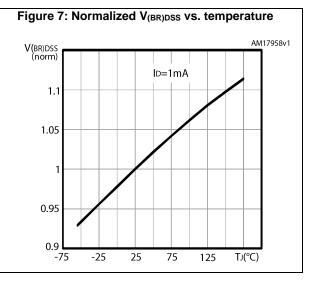


Figure 8: Static drain-source on-resistance

RDS(on) (mΩ) VGS=10V

10.0

8.0

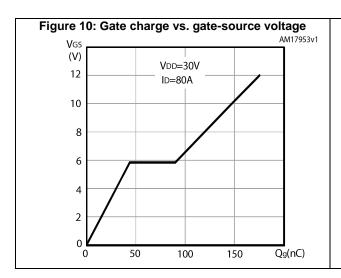
4.0

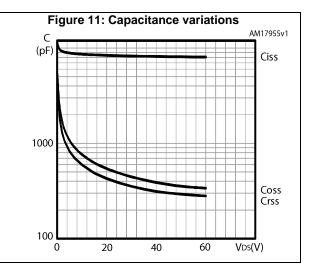
2.0

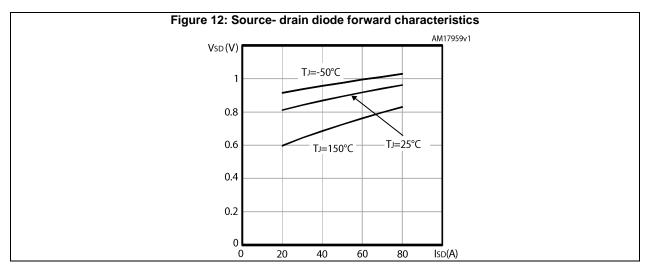
0.10

20

30


40


50


60

1D(A)

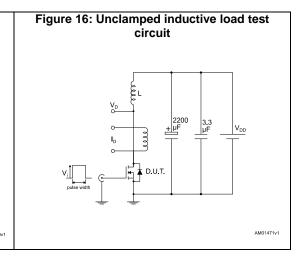
RDS(on) (norm) | ID=40A | ID=4

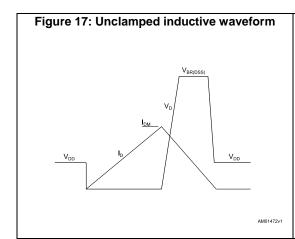
Test circuits STD80N6F6

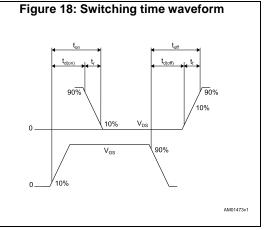
3 Test circuits

Figure 13: Test circuit for resistive load switching times

Figure 14: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF D.U.T.


Vas pulse width 1 kΩ


Vas pulse width 1 kΩ

AM01468v1

Figure 15: Test circuit for inductive load switching and diode recovery times

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 DPAK (TO-252) type A2 package information

Figure 19: DPAK (TO-252) type A2 package outline

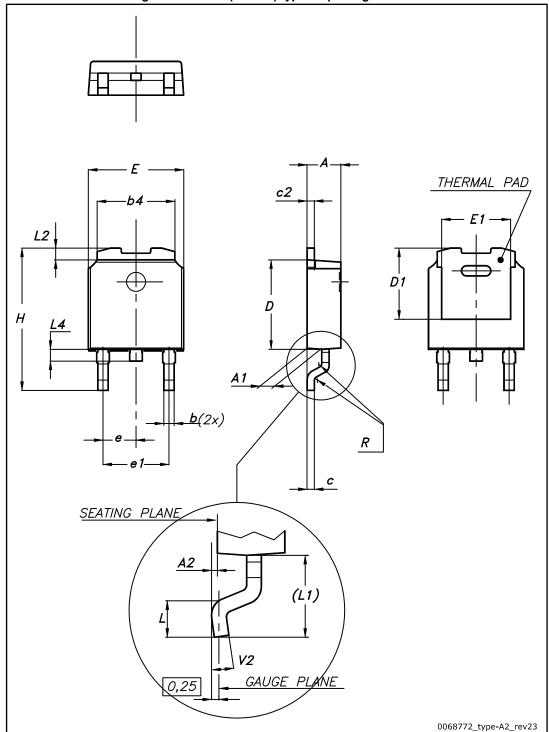
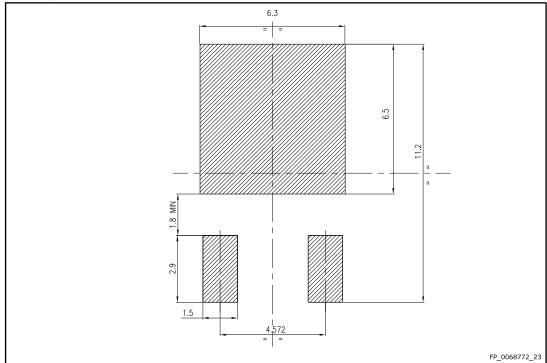



Table 8: DPAK (TO-252) type A2 mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
A	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1	4.95	5.10	5.25		
Е	6.40		6.60		
E1	5.10	5.20	5.30		
е	2.16	2.28	2.40		
e1	4.40		4.60		
Н	9.35		10.10		
L	1.00		1.50		
L1	2.60	2.80	3.00		
L2	0.65	0.80	0.95		
L4	0.60		1.00		
R		0.20			
V2	0°		8°		

Figure 20: DPAK (TO-252) type A2 recommended footprint (dimensions are in mm)

4.2 DPAK (TO-252) tape and reel mechanical data

Figure 21: DPAK (TO-252) tape outline

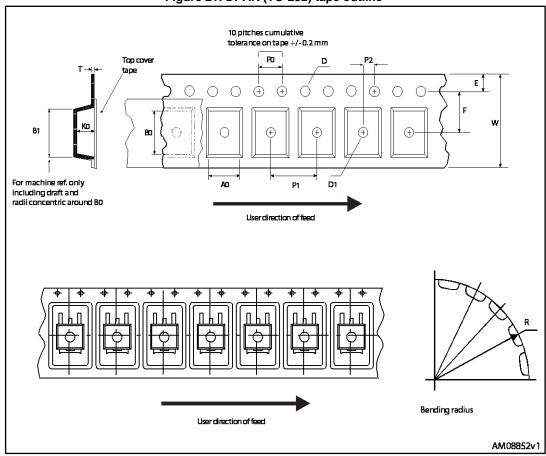


Figure 22: DPAK (TO-252) reel outline

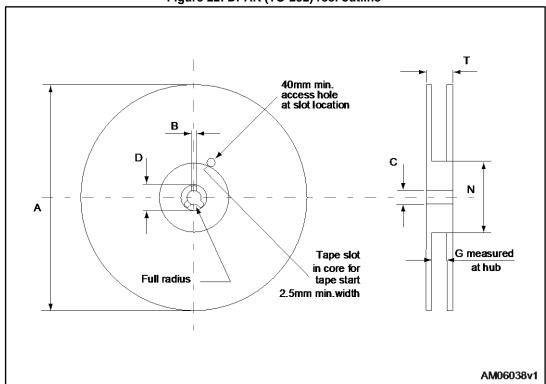


Table 9: DPAK (TO-252) tape and reel mechanical data

Table 3. BLAC(10 202) tape and red mediamon data					
	Tape			Reel	
Dim.	mm		Dim.	n	nm
Dim.	Min.	Max.	Dilli.	Min.	Max.
A0	6.8	7	Α		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base	qty.	2500
P1	7.9	8.1	Bulk	qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

STD80N6F6 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
08-Aug-2012	1	Initial release.
17-Jan-2014	2	 Document status promoted from preliminary to production data Modified: title Modified: Features Added: note 1 in cover page Modified: RDS(on)max and ID values in cover page Modified: Derating factor value in Table 2 Modified: RDS(on) values in Table 4 Modified: ID and the entire typical values in Table 5, 6 and 7 Added: Section 2.1: Electrical characteristics (curves) Updated: Section 3: Package mechanical data Minor text changes
23-May-2017	3	Modified title and features on cover page. Modified Table 3: "Thermal data". Modified Section 4: "Package mechanical data". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B