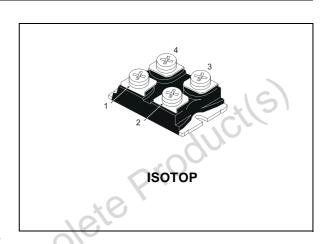
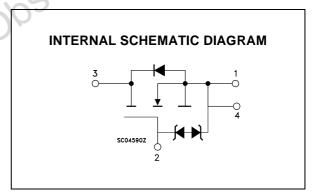


STE70NM50

N-CHANNEL 500V - 0.045Ω - 70A ISOTOP Zener-Protected MDmesh™Power MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STE70NM50	500V	< 0.05Ω	70 A


- TYPICAL $R_{DS}(on) = 0.045\Omega$
- HIGH dv/dt AND AVALANCHE CAPABILITIES
- IMPROVED ESD CAPABILITY
- LOW INPUT CAPACITANCE AND GATE CHARGE
- LOW GATE INPUT RESISTANCE
- TIGHT PROCESS CONTROL
- INDUSTRY'S LOWEST ON-RESISTANCE



The MDmesh™ is a new revolutionary MOSFET technology that associates the Multiple Drain process with the Company's PowerMESH™ horizontal layout. The resulting product has an outstanding low on-resistance, impressively high dv/dt and excellent avalanche characteristics. The adoption of the Company's proprietary strip technique yields overall dynamic performance that is significantly better than that of similar competition's products.

The MDmesh[™] family is very suitable for increasing power density of high voltage converters allowing system miniaturization and higher efficiencies.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	500	V
V_{DGR} Drain-gate Voltage (R _{GS} = 20 k Ω)		500	V
V _{GS}	Gate- source Voltage	±30	V
I _D	Drain Current (continuous) at T _C = 25°C	70	Α
I _D	Drain Current (continuous) at T _C = 100°C 44		Α
I _{DM} (•)	Drain Current (pulsed)	280	Α
P _{TOT}	Total Dissipation at T _C = 25°C	600	W
V _{ESD(G-S)}	Gate source ESD(HBM-C=100pF, R=15KΩ)	6	KV
	Derating Factor	5	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	15	V/ns
T _{stg} Storage Temperature		-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

(•)Pulse width limited by safe operating area September 2002

 $(1)I_{SD} \leq \! 60A, \ di/dt \leq \! 400A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_j \leq T_{JMAX}$

THERMAL DATA

Ī	Rthj-case	Thermal Resistance Junction-case Max	0.2	°C/W
ĺ	Rthj-amb	Thermal Resistance Junction-ambient Max	30	°C/W
	T_I	Maximum Lead Temperature For Soldering Purpose	300	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	30	Α
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 35$ V)	1.4	J

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0$	500	00		V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			10	μA
	Drain Current (V _{GS} = 0)	V _{DS} = Max Rating, T _C = 125 °C	0		100	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20V			± 10	μA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	3	4	5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 30A		0.045	0.05	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_{D} = 30A$		35		S
C _{iss}	Input Capacitance	$V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$		7500		pF
Coss	Output Capacitance			980		pF
C _{rss}	Reverse Transfer Capacitance			200		pF
R _G	Gate Input Resistance	f=1 MHz Gate DC Bias = 0 Test Signal Level = 20mV Open Drain		1.5		Ω

Note: 1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

2/8

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{DD} = 250V, I _D = 30A		51		ns
t _r	Rise Time	$R_G = 4.7\Omega V_{GS} = 10V$ (see test circuit, Figure 3)		58		ns
Qg	Total Gate Charge	V _{DD} = 400V, I _D = 60A,		190	266	nC
Q_gs	Gate-Source Charge	$V_{GS} = 10V$		53		nC
Q_gd	Gate-Drain Charge			97		nC

SWITCHING OFF

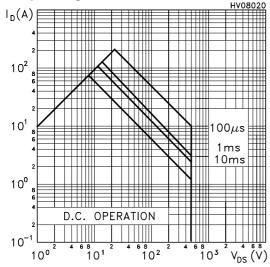
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$t_{r(Voff)}$	Off-voltage Rise Time	$V_{DD} = 400V, I_D = 60A,$		51	10r	ns
t _f	Fall Time	$R_G = 4.7\Omega$, $V_{GS} = 10V$ (see test circuit, Figure 5)		46	<i>y</i>	ns
t _c	Cross-over Time	(coo toot on out, rigaro of		108		ns

SOURCE DRAIN DIODE

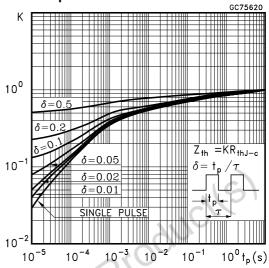
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current	60,			60	Α
I _{SDM} (2)	Source-drain Current (pulsed)	002			240	Α
V _{SD} (1)	Forward On Voltage	$I_{SD} = 60A, V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{rrm}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 60A$, di/dt = 100A/ μ s, $V_{DD} = 100$ V, $T_j = 25$ °C (see test circuit, Figure 5)		532 9.9 37		ns µC A
t _{rr} Q _{rr} I _{rrm}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 60A$, di/dt = 100A/µs, $V_{DD} = 100$ V, $T_j = 150$ °C (see test circuit, Figure 5)		636 13.4 42		ns μC A

Note: 1. Pulsed: Pulse duration = $300 \mu s$, duty cycle 1.5 %.

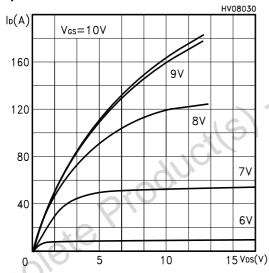
GATE-SOURCE ZENER DIODE

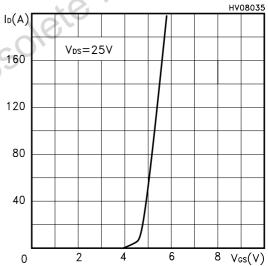

I	Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	BV _{GSO}	Gate-Source Breakdown Voltage	Igs=± 1mA (Open Drain)	30			V

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

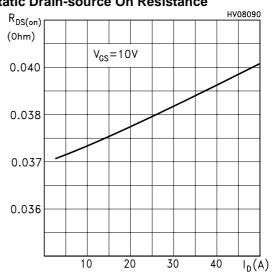

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the 25V Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

^{2.} Pulse width limited by safe operating area.

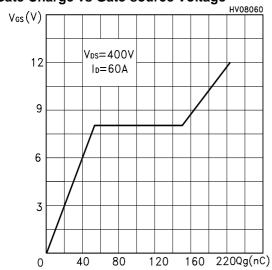

Safe Operating Area


Thermal Impedance

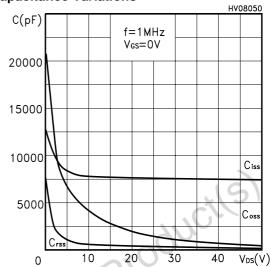
Output Characteristics

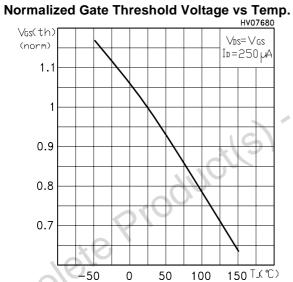

Transfer Characteristics

Transconductance

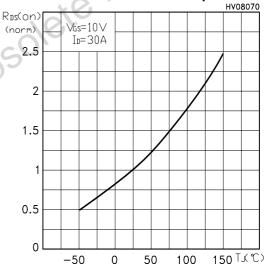


Static Drain-source On Resistance




4/8

Gate Charge vs Gate-source Voltage



Capacitance Variations

Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics

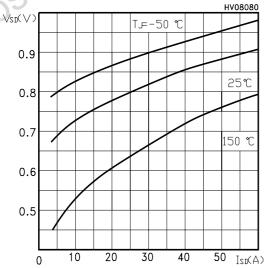


Fig. 1: Unclamped Inductive Load Test Circuit

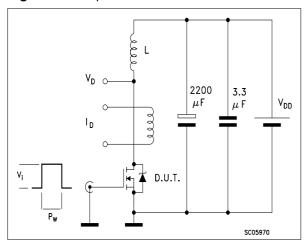
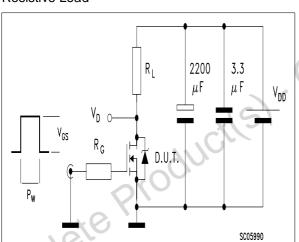



Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

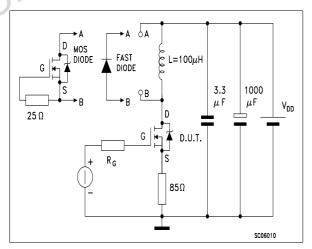
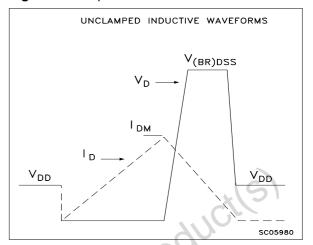
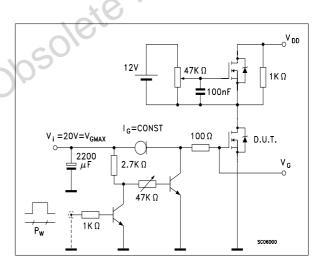
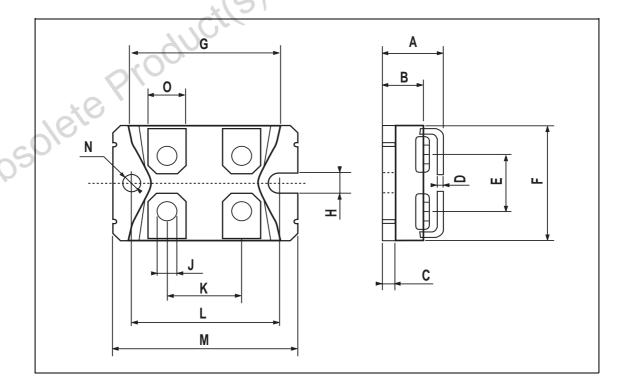


Fig. 2: Unclamped Inductive Waveform


Fig. 4: Gate Charge test Circuit

6/8

ISOTOP MECHANICAL DATA

DIM.		mm			inch	
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	11.8		12.2	0.466		0.480
В	8.9		9.1	0.350		0.358
С	1.95		2.05	0.076		0.080
D	0.75		0.85	0.029		0.033
E	12.6		12.8	0.496		0.503
F	25.15		25.5	0.990		1.003
G	31.5		31.7	1.240	2 t O O .	1.248
Н	4			0.157		
J	4.1		4.3	0.161		0.169
К	14.9		15.1	0.586		0.594
L	30.1		30.3	1.185		1.193
М	37.8		38.2	1.488		1.503
N	4			0.157		
0	7.8		8.2	0.307		0.322

Obsolete Product(s). Obsolete Product(s)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C

IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI

DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384

NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956

NTE2911 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B