Features

■ 2.7 V to 3.6 V single supply operation

- Very extended operating temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)
- High stability overtemperature
- Absolute analog rate output
- Two separate outputs for each axis ($1 x$ and $4 x$ amplified)
- Integrated low-pass filters
- Low power consumption
- Embedded power-down
- Embedded self-test
- High shock and vibration survivability
- ECOPACK ${ }^{\circledR}$ RoHS and "Green" compliant (see Section 5)

Applications

- Pointing devices, remote and rema controllers
- Gaming applications
- Motion control vitl Lst: interface
- Industrial and rob tics

Descripticn

Thery 950 AL is a low-power two-axis .nic rumachined gyroscope able to measure angular rate along pitch and yaw axes.
It provides excellent temperature stability and high resolution over extended operating temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.

The LPY550AL has a full scale of $\pm 5.10 \%$ and is capable of detecting rates with $\mathrm{a} \therefore \mathrm{dB}$ jandwidth up to 140 Hz .

The gyroscope is the cermbination of one actuator and one accelerom ${ }^{\text {t. }}$ er mtegrated in a single micromachined struciure.
It includes a \leqslant € asing element composed by single driving(r rass, kept in continuos oscillating mosiment and able to react when an angular rate $1 s$ f.pplied based on the Coriolis principle.
A CMOS IC provides the measured angular rate to the external world through an analog output voltage, allowing high level of integration and production trimming to better match sensing element characteristics.
ST gyroscope family leverages on robust and mature manufacturing process already used for the production of micromachined accelerometers.

ST is already in the field with several hundreds million sensors with excellent acceptance from the market in terms of quality, reliability and performance.
LPY550AL is provided in plastic land grid array (LGA) package. Several years ago ST pioneered successfully the usage of this package for accelerometers. Today ST has the widest manufacturing capability and strongest expertise in the world for production of sensor in plastic LGA package.

Table 1. Device summary

Order code	Temperature range $\left({ }^{\circ} \mathbf{C}\right)$	Package	Packing
LPY550AL	-40 to +85	LGA-16 $(5 \times 5 \times 1.5)$	Tray
LPY550ALTR	-40 to +85	LGA-16 $(5 \times 5 \times 1.5)$	Tape and reel

Contents

1 Block diagram and pin description 3
1.1 Pin description 3
2 Mechanical and electrical specifications 5
2.1 Mechanical characteristics 5
2.2 Electrical characteristics 6
2.3 Absolute maximum ratings 6
3 Terminology 7
3.1 Sensitivity 7
3.2 Zero-rate level 7
3.3 Self-test 7
3.4 High pass filter reset (HP) 7
4 Application hints 8
4.1 Output response vs, rotâiion 9
4.2 Soldering information 9
5 Package infr, m: $:$ xion 10
6 Revis'on history 11

1

Block diagram and pin description

Figure 1. Block diagram

1.1 Pin description

Figure 2. Pi/ICo:.nection

(TOP VIEW)
DIRECTION OF THE DETECTABLE ANGULAR RATES

(BOTTOM VIEW)

Table 2. Pin description

Pin \#	Pin name	Analog function
1	GND	OV supply voltage
2	FILTVDD	PLL filter connection pin \#2
3	VCONT	PLL filter connection pin \#1
4	OUTX	Not amplified output
5	4 xINX	Input of 4 x amplifier
6	4xOUTX	X rate signal output voltage (amplified)
7	Vref	Reference voltage
8	4xOUTZ	Z rate signal output voltage (amplified)
9	4xINZ	Input of 4x amplifier
10	OUTZ	Not amplified output
11	ST	Self-test (logic 0: normal moc'e, Içic 1: self-test)
12	PD	Power-down (logic 0: n.nmá mode; logic 1: power-down mode)
13	HP	High pass fil+ər reset (logic 0: normal operation mode; logic1: e, aienna، high pass filter is reset)
14,15	Res	Re.t'vfd. Connect to Vdd
16	Vdd	rouver supply

2 Mechanical and electrical specifications

2.1 Mechanical characteristics

Table 3. Mechanical characteristics @ Vdd $=3 \mathrm{~V}, \mathrm{~T}=\mathbf{2 5}^{\circ} \mathrm{C}$ unless otherwise noted ${ }^{(1)}$

Symbol	Parameter	Test condition	Min.	Typ. ${ }^{(2)}$	Max.	Unit
FSA	Measurement range	4x OUT (amplified)		± 500		\%
FS		OUT (not amplified)		± 2000		\%
SoA	Sensitivity ${ }^{(3)}$	4x OUT (amplified)		2		$\mathrm{mV} / \%^{\text {\% }}$
So		OUT (not amplified)		0.5		$\ldots \mathrm{a} /{ }^{\circ} \mathrm{s}$
SoDr	Sensitivity change vs temperature	Delta from $25^{\circ} \mathrm{C}$		0.037		\%/ ${ }^{\circ} \mathrm{C}$
Voff	Zero-rate level ${ }^{(3)}$			1.23		V
Vref	Reference voltage			123		V
OffDr	Zero-rate level change Vs temperature	Delta from $25^{\circ} \mathrm{C}$		0.63		${ }^{\circ} /{ }^{\circ}{ }^{\circ} \mathrm{C}$
NL	Non linearity	Best fit straight line		± 1		\% FS
BW	Bandwidth ${ }^{(4)}$			140		Hz
Rn	Rate noise density			0.059		$\% \mathrm{~s} / \sqrt{\mathrm{Hz}}$
Top	Operating temperature range		-40		+85	${ }^{\circ} \mathrm{C}$

1. The product is factory calibrated at 3 V . The opia io nal power supply range is specified in Table 4.
2. Typical specifications are not guarantera
3. Sensitivity and Zero-rate Offset a e no، ratıometric to supply voltage
4. The product is capable of m easirir, $\begin{gathered}\text { angular rates extending from DC to the selected BW. }\end{gathered}$

2.2 Electrical characteristics

Table 4. Electrical characteristics $@$ Vdd $=3 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$ unless otherwise noted ${ }^{(1)}$

Symbol	Parameter	Test condition	Min.	Typ. ${ }^{(2)}$	Max.	Unit
Vdd	Supply voltage		2.7	3	3.6	V
Idd	Supply current	PD pin connected to GND		6.8		mA
IddPdn	Supply current in power-down mode	PD pin connected to Vdd		1	5	$\mu \mathrm{A}$
Vst	Self-test input	Logic 0 level	0		0.2*Vdd	V
		Logic 1 level	0.8*Vdd		Vdd	
VPD	Power-down input	Logic 0 level	0		$0.2^{*}{ }^{\prime} \mathrm{dc}$	V
		Logic 1 level	0.8*Vdd		'dr)	
Top	Operating temperature range		-40		+85	${ }^{\circ} \mathrm{C}$

1. The product is factory calibrated at 3 V
2. Typical specifications are not guaranteed

2.3 Absolute maximum ratings

Stresses above those listed as "Abso ute naximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exros, ire to maximum rating conditions for extended periods may affect device reliability.

Table 5. Absi'ut 3 maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 6	V
Vin	Input voltage on any control pin (PD, ST)	-0.3 to $\mathrm{Vdd}+0.3$	V
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-40 to +125	${ }^{\circ} \mathrm{C}$
A	Acceleration)	3000 g for 0.5 ms	
		10000 g for 0.1 ms	
ESD	Electrostatic discharge protection	$2(\mathrm{HBM})$	kV

This is a mechanical shock sensitive device, improper handling can cause permanent damage to the part

This is an ESD sensitive device, improper handling can cause permanent damage to the part

3 Terminology

3.1 Sensitivity

An angular rate gyroscope is a device that produces a positive-going output voltage for counterclockwise rotation around the sensible axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time.

3.2 Zero-rate level

Zero-rate level describes the actual output signal if there is no angular rate presen+. Zeiorate level of precise MEMS sensors is, to some extent, a result of stress to the . .e.nsir and therefore zero-rate level can slightly change after mounting the sensor ontc a p-inted circuit board or after exposing it to extensive mechanical stress. This value chance', very little over temperature and time.

3.3 Self-test

Self-test allows testing the mechanical and elect iczi part of the sensor, allowing the seismic mass to be moved by means of an electrostatic tost-force. The self-test function is off when the ST pin is connected to GND. Whe.r the ST pin is tied to Vdd, an actuation force is applied to the sensor, emulating a de, init, Coriolis force. In this case the sensor output will exhibit a voltage change in its DC !evel which is also dependent on the supply voltage. When ST is active, the devire ou'tput level is given by the algebraic sum of the signals produced by the velocity actir. on the sensor and by the electrostatic test-force. If the output signals change within the amplitude specified in Table 3, then the mechanical element is working properly a_{1},d the parameters of the interface chip are within the defined specification

$3.4 \quad$ Hiah pass filter reset (HP)

LPY550AL provides the possibility to reset the optional external high pass filter by applying high logic value to HP pad. This procedure ensures faster response expecially during overload conditions. Moreover, this operation is suggested each time the device is powered.

4 Application hints

Figure 3. LPY550AL electrical connections and external components values

Power supply derouplin'y capacitors (100 nF ceramic or polyester $+10 \mu$ F Aluminum) should be place d is near as possible to the device (common design practice).
The L「ritoric allows band limiting the output rate response through the use of an external low pas filter (suggested) and/or high pass filter (optional) in addition to the embedded low Cecs filter ($\mathrm{t}_{\mathrm{t}}=140 \mathrm{~Hz}$).
ixOUTX and 4xOUTZ are respectively OUTX and OUTZ amplified outputs lines, internally buffered to ensure low output impedance.

If external high pass or low pass filtering is not applied it is mandatory to short-circuit respectively pad 4 to pad 5 and pad 9 to pad 10 when amplified outputs are used.

When only not-amplified outputs are used (OUTX/Z), it is suggested to set pads 5 and 9 to fixed reference voltage (Vref).
When high pass filter is applied to not amplified output (OUTx), it is recommended to buffer the line before entering ADC for performance optimization.

The LPY550AL IC includes a PLL (phase locked loop) circuit to synchronize driving and sensing interfaces. Capacitors and resistors must be added at FILTVDD and VCONT pins (as shown in Figure 3) to implement a low-pass filter.

4.1 Output response vs. rotation

Figure 4. Output response vs. rotation

Steady State position:
$4 x O U T X=4 x O U T Z=1.23 \mathrm{~V}$ OUTX $=$ OUTZ $=1.23 \mathrm{~V}$

Positive rotations as indicated by arrows increase output value over Zero rate level:
$+500^{\circ} / \mathrm{sec}-->4 x O U T X, 4 x O U T Y=1.23 \mathrm{~V}+$ SoA $5 \mathrm{~L} 0-2.23 \mathrm{~V}$ $+500^{\circ} / \mathrm{sec}-->$ OUTX, OUTZ $=1.23 \mathrm{~V}+\mathrm{So}^{*} 5 \mathrm{~J} 0:=1.48 \mathrm{~V}$

4.2 Soldering information

The LGA package is compliant with the ECOPASi- ${ }^{-\sqrt{2}}$ 万oHS and "Green" standard. It is qualified for soldering heat resistance ac incuir, g to JEDEC J-STD-020C.

Leave "pin 1 indicator" unconnected (uuriı g soldering.
Land pattern and soldering recommendations are available at www.st.com

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

Figure 5. LGA-16: mechanical data and package dimensions

Dimensions						
Ref.	mm			inch		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A1	1.46	1.5	1.6	0.057	0.059	0.063
A2			1.33			0.052
A3	0.16	0.2	0.24	0.006	0.008	0.009
C		0.3			0.012	
D1	4.85	5	5.15	0.191	0.197	0.203
E1	4.85	5	5.15	0.191	0.197	0.203
L		0.8			0.031	
L1		3.2			0.126	
M		1.6			0.062	
M1	2.15	2.175	2.20	0.085	0.086	0.087
M2		1.625			0.064	
N		2.175			0.086	
N1		2.4			0.09	
T1		0.8			0.031	
T2	0.475	0.5	0.525	0. し19 $^{\text {1 }}$	0.020	0.021
R	1.2		1.6	$0 \stackrel{\square}{47}$		0.063
S		0.1			0.004	
h		0.55			0.006	
k		L05			0.002	
j		0.1			0.004	

Outline and mechanical data

LGA-16 (5x5x1.5mm) Land Grid Array Package

7887555A

6 Revision history

Table 6. Document revision history

Date	Revision	Changes
04-Jun-2009	1	Initial release
06-Jul-2009	2	Small text changes to improve readability. Updated Table 4

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its suinsidia. ' ϵ : ' ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and ser icts v 。scribed herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and sices described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services τ_{ϵ} :cr sed herein.
No license, express or implied, by estoppel or otherwise, to any intellectual propertv in is s granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a cel se grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a \because a ranty covering the use in any manner whatsoever of such third party products or services or any intellectual property containe i i.. ? ?in.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE ANLIUR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FCD A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMERI O: AVY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN V'RITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OF W/ RHANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRCD JC 'S OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PI OP ERTY UR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE L'SED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of $S^{-}+$oc ucts with provisions different from the statements and/or technical features set forth in this document shall immediately void any war an, / yranted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Acceleration Sensor Development Tools category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
EVAL-ADXL350Z-S ADIS16201/PCBZ ADIS16260/PCBZ BRKOUT-FXLN8372Q BRKTSTBC-A8471 2019 EVAL-ADXL343Z-M EVAL-ADXL343Z-S EVAL-ADXRS622Z BRKOUT-FXLN8362Q BRKOUT-FXLN8371Q ADISEVALZ EVAL-ADXL346Z EVAL-ADXL346Z-S EVAL-ADXL350Z FRDM-K64F-AGM04 BRKTSTBC-A8491 FRDMKL25-A8491 FRDMKL25-A8471 FRDM-STBCAGM04 KX224-I2C-EVK-001 FRDMSTBC-A8471 EVAL-ADXL372-ARDZ EVAL-ADCM EVAL-CN0532-EBZ MIKROE-4185 1018 EVAL-ADXL362-ARDZ EVAL-KXCJ9-1008 $1120 \underline{1231} 1247 \underline{1413} \underline{2020}$ ADXL213EB EVAL-ADXL343Z-DB EVAL-ADXL344Z-M EVAL-ADXL345Z-M EVAL-ADXL363Z EVAL-ADXL375Z-S EVAL-ADXRS623Z EVAL-ADXRS652Z EV-BUNCH-WSN-1Z EV-CLUSTER-WSN-2Z STEVAL-MKI033V1 EVAL-ADXL344Z-DB EVAL-ADXL346Z-DB EVAL-ADXL363Z-MLP EVAL-ADXL377Z EVAL-ADXRS620Z

