STF20N65M5, STFI20N65M5, STFW20N65M5

N-channel 650 V, 0.160Ω typ., 18 A MDmesh M5 Power MOSFETs in TO-220FP, I2PAKFP and TO-3PF packages

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V ${ }_{\text {DS }}$ @ $\mathrm{T}_{\text {Jmax }}$	R ${ }_{\text {dS(on) }}$ max	ID
STF20N65M5	710 V	0.190Ω	18 A
STFI20N65M5			
STFW20N65M5			

- Extremely low Ros(on)
- Low gate charge and input capacitance
- Excellent switching performance
- 100% avalanche tested

Applications

- Switching applications

Description

These devices are N-channel Power MOSFET based on the MDmesh ${ }^{\text {TM }}$ M5 innovative vertical process technology combined with the wellknown PowerMESH ${ }^{\text {TM }}$ horizontal layout. The resulting products offer extremely low onresistance, making them particularly suitable for applications requiring high power and superior efficiency.

Table 1: Device summary

Order code	Marking	Package	Packaging
STF20N65M5		TO-220FP	
STFI20N65M5	20N65M5	Tube	
		I2PAKFP (TO-281)	
		TO-3FP	

Contents

1 Electrical ratings 3
2 Electrical characteristics 4
2.1 Electrical characteristics (curve) 6
3 Test circuits 9
4 Package information 10
4.1 TO-220FP package information 11
4.2 I2PAKFP (TO-281) package information 13
4.3 TO-3PF package information 15
5 Revision history 17

1

Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value		Unit
		TO-220FP, I2PAKFP	TO-3PF	
$V_{G S}$	Gate- source voltage	± 25		V
ID	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$18^{(1)}$		A
ID	Drain current (continuous) at $\mathrm{T}^{\text {c }}=100^{\circ} \mathrm{C}$	$11.3{ }^{(1)}$		A
Idm ${ }^{(2)}$	Drain current (pulsed)	$36{ }^{(1)}$		A
Рtot	Total dissipation at $\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$	30	48	W
dv/dt ${ }^{(3)}$	Peak diode recovery voltage slope	15		V/ns
$\mathrm{V}_{\text {ISO }}{ }^{(4)}$	Insulation withstand voltage (RMS) from all three leads to external heat sink ($\mathrm{t}=1 \mathrm{~s}$; $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$)	2500	3500	V
$\mathrm{T}_{\text {stg }}$	Storage temperature range	- 55 to 150		${ }^{\circ} \mathrm{C}$
T_{j}	Operating junction temperature range			

Notes:

${ }^{(1)}$ Limited by maximum junction temperature.
${ }^{(2)}$ Pulse width limited by safe operating area
${ }^{(3)} \mathrm{I}_{\mathrm{SD}} \leq 18 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=400 \mathrm{~A} / \mu \mathrm{S}, \mathrm{V}_{\mathrm{DS}(\text { peak })}<\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}, \mathrm{V}_{\mathrm{DD}}=400 \mathrm{~V}$
${ }^{(4)} \mathrm{V}_{\mathrm{DS}} \leq 520 \mathrm{~V}$

Table 3: Thermal data

Symbol	Parameter	Value		Unit
		TO-220FP, I2PAKFP	TO-3PF	
$R_{\text {thj-case }}$	Thermal resistance junction-case	4.17	2.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {thj-amb }}$	Thermal resistance junction-ambient	62.5	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
IAR	Avalanche current, repetitive or not repetitive (pulse width limited by $\left.T_{j m a x}\right)$	4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
E_{AS}	Single pulse avalanche energy $\left(\right.$ starting $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{AR}}, \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}$)	270	mJ

2 Electrical characteristics

($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Table 5: On /off states

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {(BR)DSS }}$	Drain-source breakdown voltage	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{ld}=1 \mathrm{~mA}$	650			V
Idss	Zero gate voltage drain current	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=650 \mathrm{~V}$			1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=650 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}{ }^{(1)} \end{aligned}$			100	$\mu \mathrm{A}$
Igss	Gate-body leakage current	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}= \pm 25 \mathrm{~V}$			± 100	nA
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate threshold voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	3	4	5	V
RDs(on)	Static drain-source onresistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ld}=9 \mathrm{~A}$		0.160	0.190	Ω

Notes:

${ }^{(1)}$ Defined by design, not subject to production test

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
Ciss	Input capacitance	$\begin{aligned} & V_{G S}=0, V_{D S}=100 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	-	1434	-	pF
Coss	Output capacitance		-	38	-	pF
Crss	Reverse transfer capacitance		-	3.7	-	pF
$\mathrm{C}_{0(\text { (r) }}{ }^{(1)}$	Equivalent capacitance time related	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=0$ to 520 V	-	118	-	pF
$\mathrm{Co}_{\text {(er) }}{ }^{(2)}$	Equivalent capacitance energy related		-	35	-	pF
R_{G}	Intrinsic gate resistance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{Id}_{\mathrm{D}}=0 \mathrm{~A}$	-	3.5	-	Ω
Q_{g}	Total gate charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=520 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=9 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \text { to } 10 \mathrm{~V} \end{aligned}$ (see Figure 18: "Test circuit for gate charge behavior")	-	36	-	nC
Qgs	Gate-source charge		-	7.5	-	nC
$Q_{g d}$	Gate-drain charge		-	18	-	nC

Notes:

${ }^{(1)} \mathrm{C}_{0}(\mathrm{rr})$ is a constant capacitance value that gives the same charging time as $\mathrm{C}_{\text {oss }}$ while V_{DS} is rising from 0 to 80% Vdss.
${ }^{(2)} \mathrm{C}_{o(e r)}$ is a constant capacitance value that gives the same stored energy as Coss while $V_{D S}$ is rising from 0 to 80% VDss.

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {d }}(\mathrm{V})$	Voltage delay time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=400 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=12 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$ (see Figure 19: "Test circuit for inductive load switching and diode recovery times" and Figure 22: "Switching time waveform")		43		ns
tr(v)	Voltage rise time		-	7.5	-	ns
$\mathrm{t}_{\text {(i) }}$	Current fall time		-	7.5	-	ns
$\mathrm{tc}_{\text {(off) }}$	Crossing time		-	11.5	-	ns

Table 8: Source drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
Iso	Source-drain current		-		18	A
Ismm ${ }^{(1)}$	Source-drain current (pulsed)		-		36	A
$\mathrm{VSD}^{(2)}$	Forward on voltage	$\mathrm{ISD}=18 \mathrm{~A}, \mathrm{VGS}=0$	-		1.5	V
$t_{\text {rr }}$	Reverse recovery time	$\begin{aligned} & \mathrm{ISD}=18 \mathrm{~A}, \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{DD}}=100 \mathrm{~V} \end{aligned}$ (see Figure 19: "Test circuit for inductive load switching and diode recovery times")	-	288		ns
Q_{r}	Reverse recovery charge		-	4		$\mu \mathrm{C}$
IRRM	Reverse recovery current		-	27		A
$\mathrm{trr}^{\text {r }}$	Reverse recovery time	$\begin{aligned} & \mathrm{ISD}=18 \mathrm{~A}, \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \\ & \mathrm{~V}_{\mathrm{DD}}=100 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$ (see Figure 19: "Test circuit for inductive load switching and diode recovery times")	-	342		ns
$Q_{r r}$	Reverse recovery charge		-	4.7		$\mu \mathrm{C}$
IRRM	Reverse recovery current		-	28		A

Notes:

${ }^{(1)}$ Pulse width limited by safe operating area
${ }^{(2)}$ Pulsed: pulse duration $=300 \mu$ s, duty cycle 1.5%

2.1 Electrical characteristics (curve)

Figure 2: Safe operating area for TO-220FP and I2PAKFP

Figure 3: Thermal impedance for for TO-220FP and I2PAKFP

Figure 4: Safe operating area for TO-3PF

Figure 5: Thermal impedance for TO-3PF

Figure 6: Output characteristics

Figure 7: Tranfer characteristics

Figure 10: Capacitance variations

Figure 9: Static drain-source on-resistance

Figure 11: Output capacitance stored energy

Figure 12: Normalized gate threshold voltage vs temperature

Figure 13: Normalized on-resistance vs temperature

Figure 16: Switching energy vs gate resistance

Eon including reverse recovery of a SiC diode.

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

4.1 TO-220FP package information

Figure 23: TO-220FP package outline

Table 9: TO-220FP package mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.4		4.6
B	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
H	10		10.4
L2	28.6		30.6
L3	9.8		10.6
L4	2.9		3.6
L5	15.9		16.4
L6	9		9.3
L7	3		3.2
Dia			

$4.2 \quad$ I2PAKFP (TO-281) package information
Figure 24: I2PAKFP (TO-281) package outline

Table 10: I2PAKFP (TO-281) mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.40		4.60
B	2.50		2.70
D	2.50		2.75
D1	0.65		0.85
E	0.45		0.70
F	0.75		1.00
F1			1.20
G	4.95		5.20
H	10.00		10.40
L1	21.00		23.00
L2	13.20		14.10
L3	10.55		10.85
L4	2.70		3.20
L5	0.85		1.25
L6	7.50		7.70

4.3 TO-3PF package information

Figure 25: TO-3PF package outline

Table 11: TO-3PF mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	5.30		5.70
C	2.80		3.20
D	3.10		3.50
D1	1.80		2.20
E	0.80		1.10
F	0.65		0.95
F2	1.80		2.20
G	10.30		11.50
G1	15.30		10
H	9.80		10.70
L	22.80		23.20
L2	26.30		26.70
L3	43.20		44.40
L4	4.30		24.70
L5	24.30		15
L6	14.60		2.20
L7	1.80		4.20
N	3.80		3.80
R	3.40		
Dia			

5 Revision history

Table 12: Document revision history

Date	Revision	Changes		
01-Feb-2013	1	$\begin{array}{l}\text { First release. Part numbers previously included in datasheet } \\ \text { DM00049308 }\end{array}$		
21-Jul-2016	2	$\begin{array}{l}\text { Added device in TO-3PF. } \\ \text { Modified: Table 2: "Absolute maximum ratings", Table 5: "On /off } \\ \text { states". } \\ \text { Modified: Figure 2: "Safe operating area for TO-220FP and 12PAKFP", } \\ \text { Figure 4: "Safe operating area for TO-3PF", Figure 5: "Thermal } \\ \text { impedance for TO-3PF". }\end{array}$		
Minor text changes			$]$	Modified Table 2: "Absolute maximum ratings", Table 8: "Source drain
:---				
diode".				
Modified Figure 2: "Safe operating area for TO-220FP and I2PAKFP",				
22-Mar-2017				
Figure 4: "Safe operating area for TO-3PF", Figure 12: "Normalized				
gate threshold voltage vs temperature ", Figure 13: "Normalized on-				
resistance vs temperature" and Figure 14: "Source-drain diode				
forward characteristics ".				
Minor text changes.				

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7

