
STF26NM60N

N-channel 600 V, 0.135 Ω typ., 20 A MDmesh™ II Power MOSFET in a TO-220FP package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	code V _{DS} R _{DS(on)} max		l _D
STF26NM60N	600 V	0.165 Ω	20 A

- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using the second generation of MDmesh™ technology. This revolutionary Power MOSFET associates a vertical structure to the company's strip layout to yield one of the world's lowest on-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packaging
STF26NM60N	26NM60N	TO-220FP	Tube

Contents STF26NM60N

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	8
4	Packag	e information	9
	4.1	TO-220FP package information	10
5	Revisio	on history	12

STF26NM60N Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	600	V
V_{GS}	Gate-source voltage	±30	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	20	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	12.6	Α
I _{DM} (1)(2)	Drain current (pulsed) 80		Α
Ртот	Total dissipation at T _C = 25 °C	35	W
dv/dt (3)	Peak diode recovery voltage slope	15	V/ns
Viso	Insulation withstand voltage (RMS) from all three leads to external heat sink 2500 (t = 1 s; $T_C = 25$ °C)		V
T _{stg}	Storage temperature range	FF to 1F0	°C
Tj	Operating junction temperature range	-55 to 150	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	3.6	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
las	Single pulse avalanche current (pulse width limited by T _{jmax})	6	Α
Eas	Single pulse avalanche energy (starting T _J =25 °C, I _D =I _{AR} , V _{DD} =50 V)	610	mJ

⁽¹⁾Limited by package.

⁽²⁾Pulse width limited by safe operating area.

 $^{^{(3)}}$ I_{SD} \leq 20 A, di/dt \leq 400 A/ μ s, V_{DS(peak)} \leq V(BR)DSS, V_{DD} \leq 80% V(BR)DSS

Electrical characteristics STF26NM60N

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0 V	600			V
	Zaro goto voltogo droin	V _{GS} = 0 V, V _{DS} = 600 V			1	
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{C} = 125 \text{ °C}$ (1)			100	μΑ
Igss	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±0.1	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 10 A		0.135	0.165	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		ı	1800	-	pF
Coss	Output capacitance	$V_{DS} = 50 \text{ V}, f = 1 \text{ MHz},$	ı	115	-	pF
C _{rss}	Reverse transfer capacitance	V _G S = 0 V	ı	6	-	pF
Coss eq. (1)	Equivalent output capacitance	V _{GS} = 0 V, V _{DS} = 0 to 480 V	ı	310	1	pF
Qg	Total gate charge	V _{DD} = 480 V, I _D = 20 A,		60	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	1	8.5	-	nC
Q_{gd}	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior")	-	30	-	nC
Rg	Gate input resistance	f=1 MHz, I _D =0 A	ı	2.8	-	Ω

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 10 \text{ A},$	ı	13	ı	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit for	-	25	-	ns
t _{d(off)}	Turn-off delay time	resistive load switching times"	ı	85	1	ns
tf	Fall time	and Figure 18: "Switching time waveform")	ı	50	ı	ns

⁽¹⁾Defined by design, not subject to production test.

 $^{^{(1)}}C_{oss~eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS}

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		20	Α
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		-		80	Α
V _{SD} ⁽³⁾	Forward on voltage	I _{SD} = 20 A, V _{GS} = 0 V			1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 A/µs	-	370		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}$	-	5.8		μC
I _{RRM}	Reverse recovery current	(see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	31.6		Α
t _{rr}	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 A/μs	-	450		ns
Qrr	Reverse recovery charge V _{DD} = 60 V, T _j = 150 °C (see		-	7.5		μC
I _{RRM}	Reverse recovery current	Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	32.5		А

Notes:

⁽¹⁾Pulse width limited by package.

 $[\]ensuremath{^{(2)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(3)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s,}$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

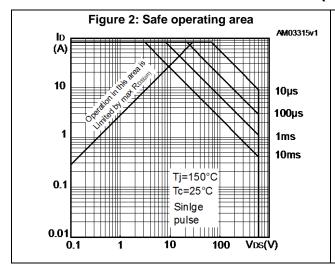
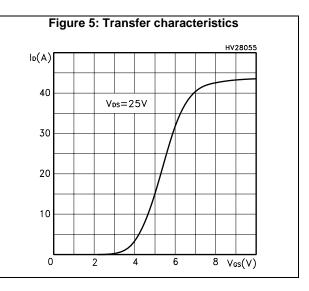
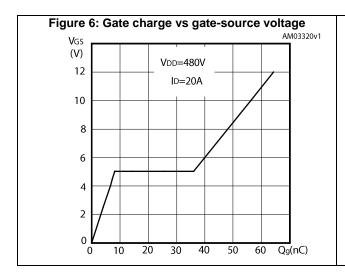
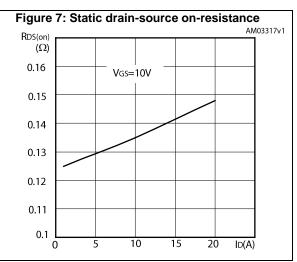





Figure 4: Output characteristics HV28050 lo(A) $V_{GS} = 10V$ 87 40 9٧ 7٧ 30 6٧ 20 5٧ 10 4V Vps(V) 15

STF26NM60N Electrical characteristics

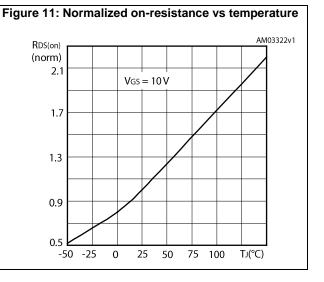
Figure 8: Capacitance variations

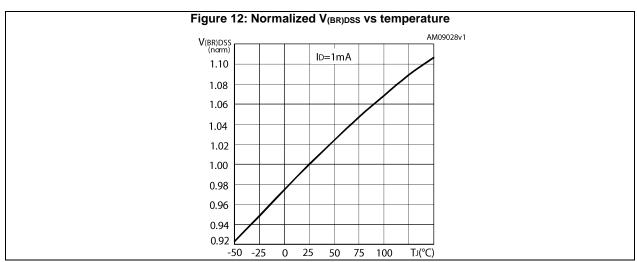
(pF)

10000

1000

Ciss


Coss


100

100

Crss

Figure 10: Normalized gate threshold voltage vs temperature AM03321v1 $V_{GS(th)}$ (norm) 1.1 $ID = 250 \mu A$ 1.0 0.9 0.8 0.7 _____ 0 25 50 75 100 T)(°C)

Test circuits STF26NM60N

3 Test circuits

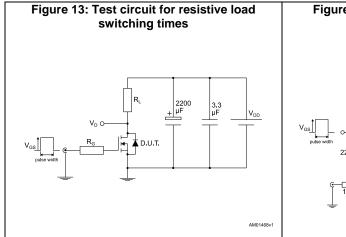
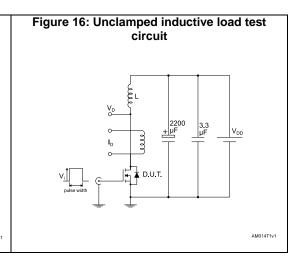
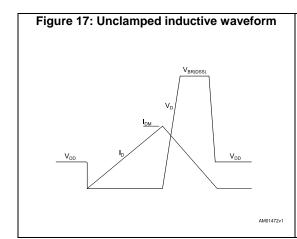
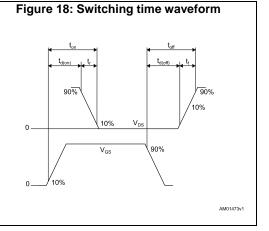


Figure 14: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF 1 kΩ


Vos 1 kΩ 1 kΩ


Vos 1 kΩ 1 kΩ

AM01466y1

Figure 15: Test circuit for inductive load switching and diode recovery times

STF26NM60N Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP package information

Figure 19: TO-220FP package outline

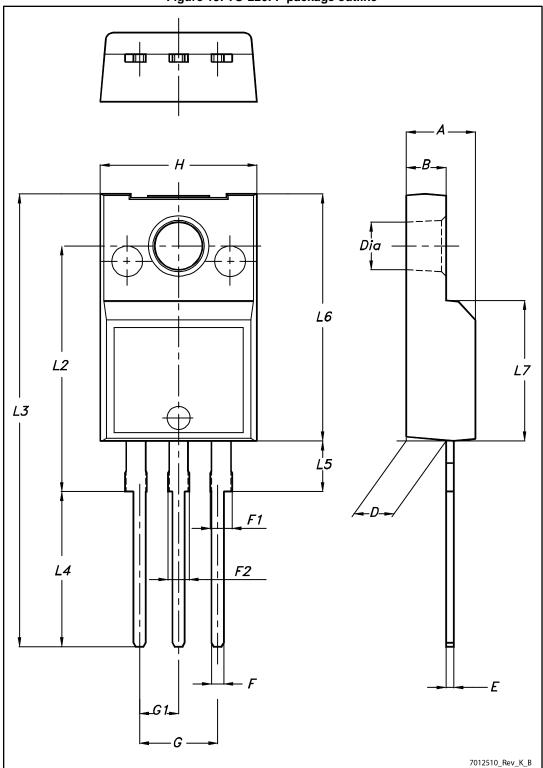


Table 9: TO-220FP package mechanical data

Di		mm	
Dim.	Min.	Тур.	Max.
А	4.4		4.6
В	2.5		2.7
D	2.5		2.75
Е	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Revision history STF26NM60N

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
13-Dec-2016	1	First release. Part number previously included in datasheet DocID15642

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B