life.augmented

STF27N60M2-EP

N-channel 600 V, 0.150 Ω typ., 20 A MDmesh[™] M2 EP Power MOSFET in TO-220FP package

Datasheet - production data

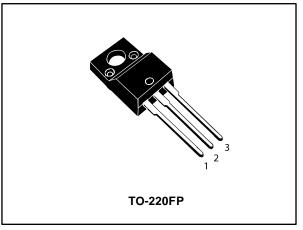
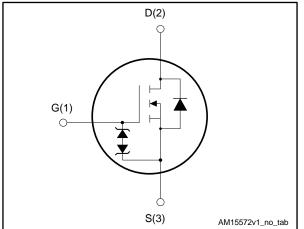



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	ID
STF27N60M2-EP	600 V	0.163 Ω	20 A

- Extremely low gate charge
- Excellent output capacitance (C_{OSS}) profile
- Very low turn-off switching losses
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications
- Tailored for very high frequency converters (f > 150 kHz)

Description

These devices are N-channel Power MOSFETs developed using MDmesh[™] M2 EP enhanced performance technology. Thanks to their strip layout and an improved vertical structure, these devices exhibit low on-resistance, optimized switching characteristics with very low turn-off switching losses, rendering them suitable for the most demanding very high frequency converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STF27N60M2-EP	27N60M2EP	TO-220FP	Tube

DocID028863 Rev 1

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220FP package information	10
5	Revisio	on history	12

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 25	V
I _D ⁽¹⁾	Drain current (continuous) at $T_c = 25 \text{ °C}$	20	А
I _D ⁽¹⁾	Drain current (continuous) at $T_c = 100 \text{ °C}$	13	А
I _{DM} ⁽²⁾	Drain current (pulsed)	80	А
P _{TOT}	Total dissipation at $T_C = 25 \text{ °C}$	30	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; T_c = 25 °C)	2.5	kV
T _{stg}	Storage temperature	55 to 150	°C
Tj	Operating junction temperature	- 55 to 150	C

Notes:

⁽¹⁾Limited by maximum junction temperature

 $^{\rm (2)}{\rm Pulse}$ width limited by safe operating area.

 $^{(3)}I_{SD} \leq 20$ A, di/dt ≤ 400 A/µs; V_DS(peak) < V(BR)DSS, V_DD = 400 V.

 $^{(4)}V_{DS} \le 480 \text{ V}$

Table 3: Thermal data

Symbol	Parameter		Unit
R _{thj-case}	Thermal resistance junction-case max		°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter		Unit
I _{AR}	Avalanche current, repetetive or not repetetive (pulse width limited by T_{jmax})	3.6	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$; $V_{DD} = 50 \text{ V}$)	260	mJ

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 V$, $I_D = 1 mA$	600			V
	Zara gata valtaga drain	$V_{GS} = 0 V, V_{DS} = 600 V$			1	μA
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 600 V,$ $T_{C} = 125 \text{ °C}$			100	μA
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = ±25 V			±10	μA
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μ A	2	3	4	V
$R_{\text{DS(on)}}$	Static drain-source on- resistance	V_{GS} = 10 V, I _D = 10 A		0.150	0.163	Ω

Table 6: Dynamic							
Symbol	Symbol Parameter Test conditions			Тур.	Max.	Unit	
Ciss	Input capacitance		-	1320	-	pF	
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V		70	-	pF	
C _{rss}	Reverse transfer capacitance			1	-	pF	
Coss eq. ⁽¹⁾	Equivalent output capacitance	$V_{DS} = 0$ to 480 V, $V_{GS} = 0$ V	-	146	-	pF	
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A		4	-	Ω	
Qg	Total gate charge		-	33	-	nC	
Q _{gs}	Gate-source charge	V_{DD} = 480 V, I_D = 20 A, V_{GS} = 10 V (see Figure 15: "Test circuit for gate charge behavior")		5.2	-	nC	
Q_{gd}	Gate-drain charge		-	16	-	nC	

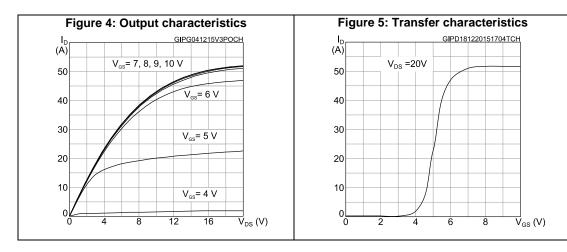
Notes:

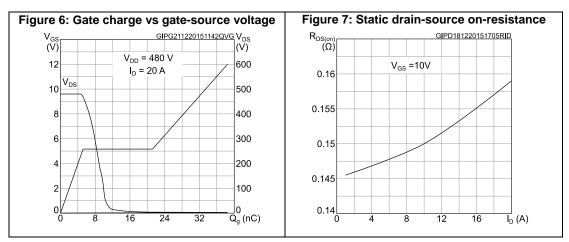
 $^{(1)}C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 10 \text{ A}, \text{ R}_{G} = 4.7 \Omega,$	-	13.4	-	ns	
tr	Rise time	$V_{DD} = 300 V$, $I_D = 10 A$, $R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Test circuit for resistive load switching times" and Figure 19: "Switching time waveform")		8.1	-	ns	
t _{d(off)}	Turn-off- delay time			55.6	-	ns	
t _f	Fall time		-	6.3	-	ns	

Table 7: Switching times

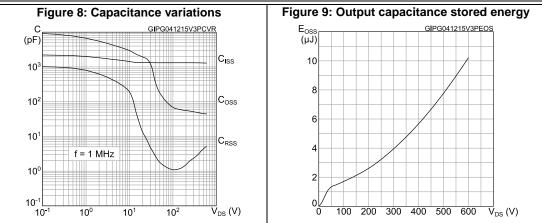
	Table 8: Source-drain diode							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
I _{SD}	Source-drain current		-		20	А		
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		80	А		
V _{SD} ⁽²⁾	Forward on voltage	$V_{GS} = 0 V, I_{SD} = 20 A$	-		1.6	V		
t _{rr}	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 A/µs, V _{DD} = 60 V (see Figure 19: "Switching time waveform")		271		ns		
Q _{rr}	Reverse recovery charge			3.44		μC		
I _{RRM}	Reverse recovery current			25.4		А		
t _{rr}	Reverse recovery time	I_{SD} = 20 A, di/dt = 100 A/µs, V _{DD} = 60 V, T _j = 150 °C (see <i>Figure 19: "Switching time waveform"</i>)		352		ns		
Q _{rr}	Reverse recovery charge			4.82		μC		
I _{RRM}	Reverse recovery current	,	-	27.4		А		

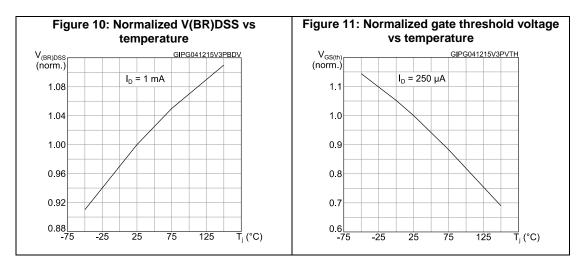

Notes:

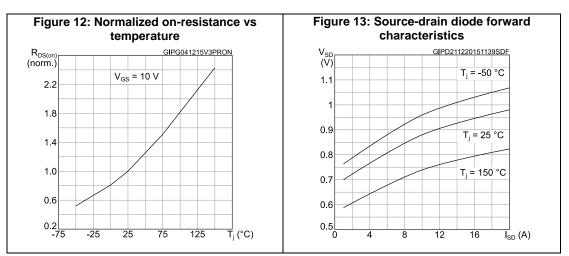

 $^{(1)}\mbox{Pulse}$ width is limited by safe operating area

 $^{(2)}$ Pulsed: pulse duration = 300 µs, duty cycle 1.5%

2.1 **Electrical characteristics (curves)** Figure 2: Safe operating area Figure 3: Thermal impedance 120161308 RV Id (A) K GC2 δ =0.5 Operation in this a Limited by R_{DS(on)} δ=0.2 10 t_p = 10 μs δ =0.1 j, δ =0.05 10 t_p = 100 μs δ =0.02 Zth=K*Rth δ =0.01 $\delta = t_p / T$ t_p = 1 ms Single pulse Single pulse,Tc =25°C Tj≤150°C,VGS=10 V t_p = 10 ms -t₀ ⊑ 10^{-2} 0.1 10 100 VDS[V] 10-4 10⁻³ 10⁻² 10-1 10⁰ t_p(s) 0.1

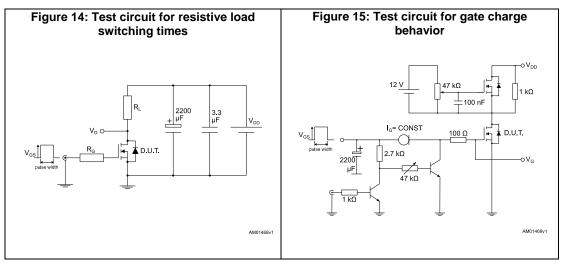


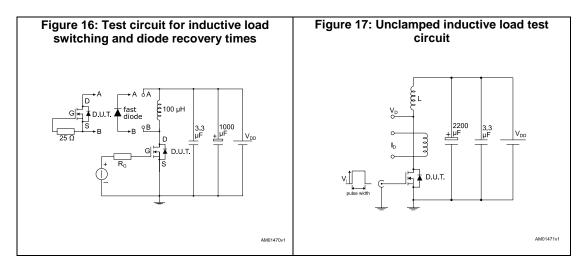

DocID028863 Rev 1



STF27N60M2-EP

Electrical characteristics

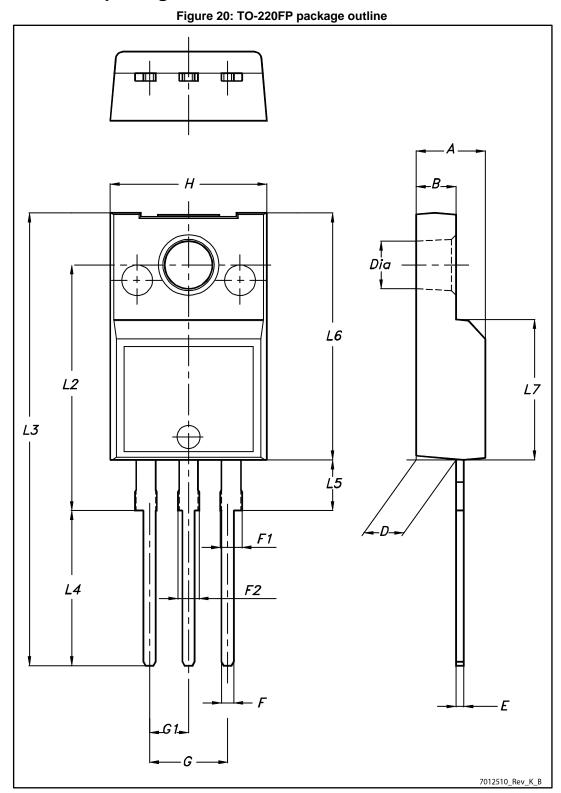





57

DocID028863 Rev 1

3 Test circuits


57

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-220FP package information

DocID028863 Rev 1

STF27N60M2-EP

Package information

Table 9: TO-220FP	nackade	mechanical data
	package	mechanical uala

	mm					
Dim.	Min.	Тур.	Max.			
A	4.4		4.6			
В	2.5		2.7			
D	2.5		2.75			
E	0.45		0.7			
F	0.75		1			
F1	1.15		1.70			
F2	1.15		1.70			
G	4.95		5.2			
G1	2.4		2.7			
Н	10		10.4			
L2		16				
L3	28.6		30.6			
L4	9.8		10.6			
L5	2.9		3.6			
L6	15.9		16.4			
L7	9		9.3			
Dia	3		3.2			

Revision history 5

Table 10: Document revision history

Date	Revision	Changes
14-Jan-2016	1	First release.

STF27N60M2-EP

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B