

STFH24N60M2

N-channel 600 V, 0.168 Ω typ., 18 A MDmesh™ M2 Power MOSFET in a TO-220FP wide creepage package

Datasheet - production data

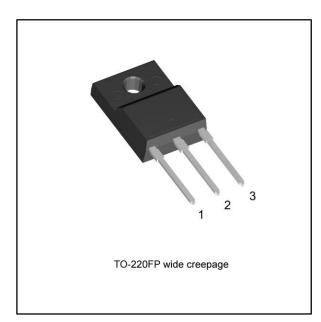
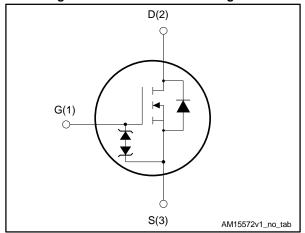



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max	ΙD
STFH24N60M2	650 V	0.19 Ω	18 A

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected
- Wide creepage distance of 4.25 mm between the pins

Applications

- Switching applications
- LLC converters, resonant converters

Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

The TO-220FP wide creepage package provides increased surface insulation for Power MOSFETs to prevent failure due to arcing, which can occur in polluted environments.

Table 1: Device summary

Order code	Marking	Package	Packing
STFH24N60M2	24N60M2	TO-220FP wide creepage	Tube

June 2016 DocID029415 Rev 2 1/12

Contents STFH24N60M2

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220FP wide creepage package information	9
5	Revisio	n history	11

STFH24N60M2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	18 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100 °C	12 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	72 ⁽¹⁾	Α
P _{TOT}	Total dissipation at $T_C = 25$ °C	30	W
dv/dt (3)	Peak diode recovery voltage slope	15	V/ns
dv/dt (4)	MOSFET dv/dt ruggedness	50	V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; TC = 25 °C)	2500	٧
T _{stg}	Storage temperature range	FF to 150	°C
Tj	Operating junction temperature range	- 55 to 150	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	4.2	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	3.5	Α
Eas	Single pulse avalanche energy (starting T _j =25 °C, I _D = I _{AR} ; V _{DD} =50 V)	180	mJ

⁽¹⁾Limited by maximum junction temperature.

⁽²⁾Pulse width limited by safe operating area.

 $^{^{(3)}}I_{SD} \leq$ 18 A, di/dt \leq 400 A/µs; VDSpeak < V(BR)DSS, VDD = 400 V.

 $^{^{(4)}}V_{DS} \le 480 \text{ V}.$

Electrical characteristics STFH24N60M2

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 5: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0$, $I_D = 1$ mA	600			V
		V _{GS} = 0, V _{DS} = 600 V			1	μA
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0,$ $V_{DS} = 600 \text{ V},$ $T_{C}=125 \text{ °C}^{(1)}$			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0$, $V_{GS} = \pm 25 \text{ V}$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, I_{D} = 9 \text{ A}$		0.168	0.190	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1060	-	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	55	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	2.2	-	pF
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V	-	258	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	-	7		Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 18 A,	-	29	-	nC
Qgs	Gate-source charge	V _{GS} = 10 V	-	6	1	nC
Q_{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	12	-	nC

Notes:

⁽¹⁾Defined by design, not subject to production test.

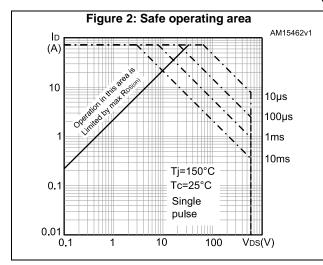
 $^{^{(1)}}$ Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS.

Table 7: Switching times

JJJ						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_{D} = 9 \text{ A},$	ı	14	1	ns
tr	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	-	9	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 14: "Test circuit for resistive load switching times" and	-	60	-	ns
t _f	Fall time	Figure 19: "Switching time waveform")	-	15	-	ns

Table 8: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		18	Α
I _{SDM} ⁽¹⁾⁽²⁾	Source-drain current (pulsed)		-		72	Α
V _{SD} ⁽³⁾	Forward on voltage	I _{SD} = 18 A, V _{GS} = 0 V	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 18 A, di/dt = 100 A/μs	-	332		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load switching	-	4		μC
I _{RRM}	Reverse recovery current	and diode recovery times")		24		Α
t _{rr}	Reverse recovery time	I _{SD} = 18 A, di/dt = 100 A/μs	-	450		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C (see Figure 16: "Test circuit for	-	5.5		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	25		Α


Notes:

 $^{^{(1)}}$ The value is rated according to $R_{\text{thj-case}}$ and limited by package.

⁽²⁾Pulse width limited by safe operating area

 $^{^{(3)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s,}$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

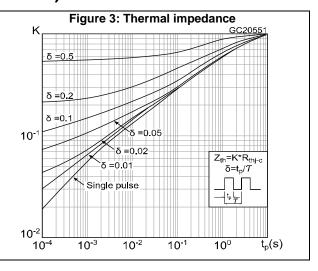
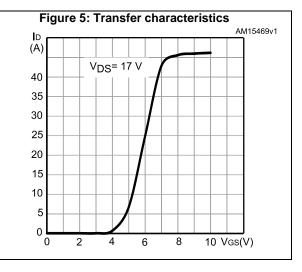
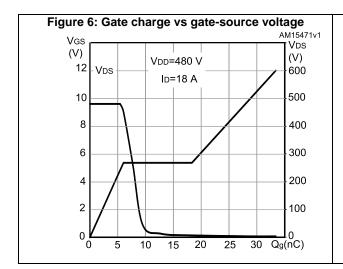
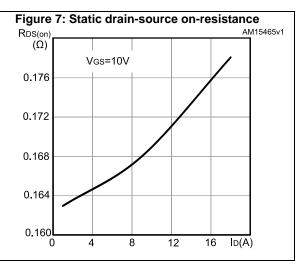





Figure 4: Output characteristics AM15470v1 V_{GS}= 8, 9, 10 V (A) V_{GS}= 7 V 40 35 30 25 V_{GS}= 6 V 20 15 10 V_{GS}= 5 V 5 V_{GS}= 4 V 0 20 VDS(V) 5 10

STFH24N60M2 Electrical characteristics

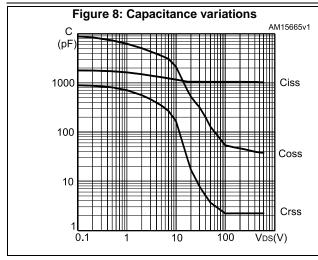


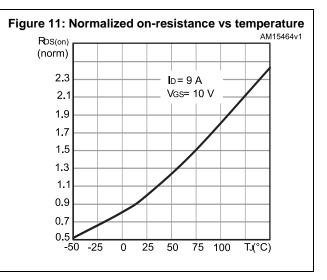
Figure 9: Output capacitance stored energy

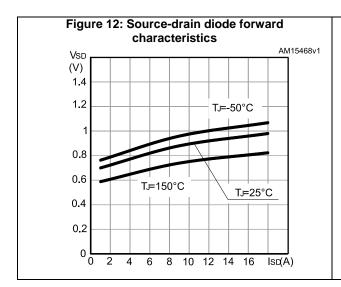
AM15472v1

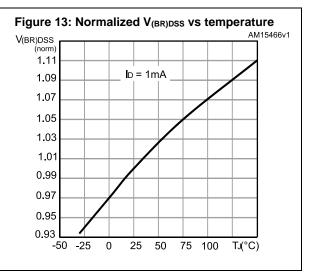
AM15472v1

AM15472v1

AM15472v1


AM15472v1


AM15472v1


AM15472v1

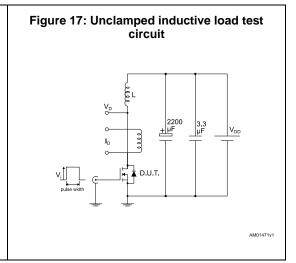
AM15472v1

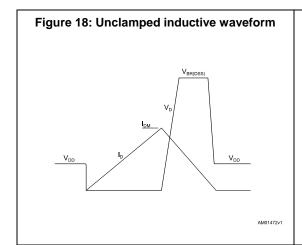
Figure 10: Normalized gate threshold voltage vs temperature AM15473v1 VGS(th) (norm) $I_D = 250 \, \mu A$ 1.1 1.0 0.9 0.8 0.7 0.6 -25 0 25 50 75 100 TJ(°C)

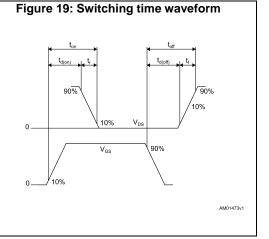
Test circuits STFH24N60M2

3 Test circuits

Figure 14: Test circuit for resistive load switching times


Figure 15: Test circuit for gate charge behavior


12 V 47 KΩ 100 NF D.U.T.


VGS 1 KΩ 100 NF D.U.T.

AM01469v1

Figure 16: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP wide creepage package information

57 D 14 G1 G Ε

Figure 20: TO-220FP wide creepage package outline

Table 9: TO-220FP wide creepage package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.60	4.70	4.80
В	2.50	2.60	2.70
D	2.49	2.59	2.69
E	0.46		0.59
F	0.76		0.89
F1	0.96		1.25
F2	1.11		1.40
G	8.40	8.50	8.60
G1	4.15	4.25	4.35
Н	10.90	11.00	11.10
L2	15.25	15.40	15.55
L3	28.70	29.00	29.30
L4	10.00	10.20	10.40
L5	2.55	2.70	2.85
L6	16.00	16.10	16.20
L7	9.05	9.15	9.25
Dia	3.00	3.10	3.20

STFH24N60M2 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
07-Jun-2016	1	First release.
16-Jun-2016	2	Document status promoted from preliminary data to production data. Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C

IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI

DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384

NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956

NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF