N-channel 650 V, 0.09Ω typ., 28 A MDmesh ${ }^{\text {M }}$ V Power MOSFETs in TO-220FP, I ${ }^{2}$ PAKFP, I I^{2} PAK packages
 Datasheet - production data

Figure 1. Internal schematic diagram

Features

Order codes	$\mathbf{V}_{\mathbf{D S}} @ \mathbf{T}_{\text {Jmax }}$	$\mathbf{R}_{\mathbf{D S} \text { (on) }}$ max	$\mathbf{I}_{\mathbf{D}}$
STF34N65M5	710 V	0.11Ω	28 A
STFI34N65M5			

- Worldwide best $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ * area
- Higher $\mathrm{V}_{\text {DSS }}$ rating and high dv/dt capability
- Excellent switching performance
- 100% avalanche tested

Applications

- Switching applications

Description

These devices are N -channel MDmesh ${ }^{\text {™ }} \mathrm{V}$ Power MOSFETs based on an innovative proprietary vertical process technology, which is combined with STMicroelectronics' well-known PowerMESH ${ }^{\text {TM }}$ horizontal layout structure. The resulting product has extremely low onresistance, which is unmatched among siliconbased Power MOSFETs, making it especially suitable for applications which require superior power density and outstanding efficiency.

Table 1. Device summary

Order codes	Marking	Packages	Packaging
STF34N65M5	$34 N 65 M 5$	TO-220FP	Tube
STFI34N65M5		I^{2} PAKFP (TO-281)	

Contents

1 Electrical ratings .. 3
2 Electrical characteristics ... 4
2.1 Electrical characteristics (curves) . 6

3 Test circuits .. 9

4 Package mechanical data . 10
5 Revision history .. 14

Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	± 25	V
I_{D}	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$28^{(1)}$	A
I_{D}	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	$17.7^{(1)}$	A
$\mathrm{I}_{\mathrm{DM}}{ }^{(1)}$	Drain current (pulsed)	$112^{(1)}$	A
$\mathrm{P}_{\mathrm{TOT}}$	Total dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	35	W
dv/dt ${ }^{(2)}$	Peak diode recovery voltage slope	15	$\mathrm{~V} / \mathrm{ns}$
dv/dt ${ }^{(3)}$	MOSFET dv/dt ruggedness	50	$\mathrm{~V} / \mathrm{ns}$
$\mathrm{V}_{\text {ISO }}$	Insulation withstand voltage (RMS) from all three leads to external heat sink $\left(\mathrm{t}=1 \mathrm{~s} ; ~ \mathrm{TC}=25^{\circ} \mathrm{C}\right)$	2500	V
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Max. operating junction temperature	150	${ }^{\circ} \mathrm{C}$

1. Limited by maximum junction temperature.
2. $\mathrm{I}_{\mathrm{SD}} \leq 28 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 400 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{V}_{\mathrm{DS} \text { peak }}<\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}, \mathrm{V}_{\mathrm{DD}}=400 \mathrm{~V}$.
3. $\mathrm{V}_{\mathrm{DS}} \leq 480 \mathrm{~V}$

Table 3. Thermal data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\text {thj-case }}$	Thermal resistance junction-case max	3.57	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thj-amb }}$	Thermal resistance junction-ambient max	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I_{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by $\mathrm{T}_{\text {jmax }}$)	7	A
E_{AS}	Single pulse avalanche energy (starting $\mathrm{t}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, $\mathrm{I}_{\mathrm{d}}=\mathrm{I}_{\mathrm{AR}} ; \mathrm{V}_{\mathrm{dd}}=50$)	510	mJ

2 Electrical characteristics

($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Table 5. On /off states

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	Drain-source breakdown voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$	650			V
$\mathrm{I}_{\mathrm{DSS}}$	Zero gate voltage drain current $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	$\mathrm{V}_{\mathrm{DS}}=650 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{DS}}=650 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			1	$\mu \mathrm{~A}$
100	$\mu \mathrm{~A}$					

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{C}_{\text {iss }}$	Input capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=100 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	-	2700	-	pF
$\mathrm{C}_{\text {oss }}$	Output capacitance		-	75	-	pF
Crss	Reverse transfer capacitance		-	6.3	-	pF
$\mathrm{C}_{\mathrm{o}(\mathrm{tr})^{(1)}}$	Equivalent capacitance time related	$\mathrm{V}_{\mathrm{DS}}=0$ to $520 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	-	220	-	pF
$\mathrm{C}_{\mathrm{o}(\mathrm{er})}{ }^{(2)}$	Equivalent capacitance energy related		-	63	-	pF
R_{G}	Intrinsic gate resistance	$\mathrm{f}=1 \mathrm{MHz}$ open drain	-	1.95	-	Ω
Q_{g}	Total gate charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=520 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=14 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \text { (see Figure 16) } \end{aligned}$	-	62.5	-	nC
Q_{gs}	Gate-source charge		-	17	-	nC
$Q_{\text {gd }}$	Gate-drain charge		-	28	-	nC

1. Time related is defined as a constant equivalent capacitance giving the same charging time as $\mathrm{C}_{\text {oss }}$ when $V_{D S}$ increases from 0 to $80 \% V_{D S S}$
2. Energy related is defined as a constant equivalent capacitance giving the same stored energy as $\mathrm{C}_{\text {oss }}$ when V_{DS} increases from 0 to $80 \% \mathrm{~V}_{\mathrm{DSS}}$

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$t_{d}(\mathrm{v})$	Voltage delay time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$ (see Figure 17 and Figure 20)	-	59	-	ns
$\mathrm{tr}_{\mathrm{r}}(\mathrm{v})$	Voltage rise time		-	8.7	-	ns
$\mathrm{t}_{\mathrm{f}}(\mathrm{i})$	Current fall time		-	7.5	-	ns
t_{c} (off)	Crossing time		-	12	-	ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{I}_{\text {SD }}$	Source-drain current		-		28	A
$\mathrm{I}_{\text {SDM }}{ }^{(1)}$	Source-drain current (pulsed)		-		112	A
$\mathrm{V}_{S D}{ }^{(2)}$	Forward on voltage	$\mathrm{I}_{\mathrm{SD}}=28 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	-		1.5	V
t_{rr}	Reverse recovery time	$\begin{aligned} & \mathrm{I}_{\mathrm{SD}}=28 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{DD}}=100 \mathrm{~V}(\text { see Figure } 20) \end{aligned}$	-	350		ns
$Q_{\text {rr }}$	Reverse recovery charge		-	5.6		$\mu \mathrm{C}$
$\mathrm{I}_{\text {RRM }}$	Reverse recovery current		-	32		A
t_{rr}	Reverse recovery time	$\begin{aligned} & \mathrm{I}_{\mathrm{SD}}=28 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{DD}}=100 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & \text { (see Figure 20) } \end{aligned}$	-	422		ns
Q_{rr}	Reverse recovery charge		-	7.4		$\mu \mathrm{C}$
$\mathrm{I}_{\text {RRM }}$	Reverse recovery current		-	35		A

1. Pulse width limited by safe operating area.
2. Pulsed: pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

Figure 5. Transfer characteristics

Figure 6. Gate charge vs gate-source voltage

VGS (V) 12	\square			AM15321v1
		VDD=520 V		
	VDs	$\mathrm{ld}=14 \mathrm{~A}$		
10			-	400
8				
				300
	5			
64				
				200
2				
	1			100
2	-			
		V		
	20	4050	$30 \quad 70 \quad 80$	${ }_{0}(\mathrm{nC})$

Figure 7. Static drain-source on-resistance

Figure 8. Capacitance variations

Figure 10. Normalized gate threshold voltage vs temperature

Figure 12. Source-drain diode forward characteristics

Figure 14. Switching losses vs gate resistance (1)

1. Eon including reverse recovery of a SiC diode

3 Test circuits

Figure 15. Switching times test circuit for resistive load

Figure 17. Test circuit for inductive load switching and diode recovery times

Figure 16. Gate charge test circuit

Figure 18. Unclamped inductive load test circuit

Figure 19. Unclamped inductive waveform

Figure 20. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

Figure 21. TO-220FP drawing

Table 9. TO-220FP mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.4		4.6
B	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
H	10		10.4
L2	28.6		30.6
L3	9.8		10.6
L4	2.9		3.6
L5	15.9		16.4
L6	9		9.3
L7	3		3.2
Dia			

Figure 22. I^{2} PAKFP (TO-281) drawing

Table 10. 1^{2} PAKFP (TO-281) mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.40		4.60
B	2.50		2.70
D	2.50		2.75
D1	0.65		0.85
E	0.45		0.70
F	0.75		1.00
F1			1.20
G	4.95	-	5.20
H	10.00		10.40
L1	21.00		23.00
L2	13.20		14.10
L3	10.55		10.85
L4	2.70		3.20
L5	0.85		1.25
L6	7.30		7.50

5 Revision history

Table 11. Document revision history

Date	Revision	Changes
14-Jan-2014	1	First release. Part numbers previously included in datasheet DocID022853

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B

