Low voltage high bandwidth dual SPDT switch

Features

- Ultra low power dissipation:
- $\mathrm{I}_{\mathrm{CC}}=0.2 \mu \mathrm{~A}$ (Max.) at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
- Low "ON" resistance:
- $\mathrm{R}_{\mathrm{ON}}=4.6 \Omega\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$
- $\mathrm{R}_{\mathrm{ON}}=5.8 \Omega\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
- Wide operating voltage range:
- $\mathrm{V}_{\mathrm{CC}}(\mathrm{Opr})=1.65 \mathrm{~V}$ to 4.3 V single supply
- 4.3 V tolerant and 1.8 V compatible threshold on digital control input at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 3.0 V
- Typical bandwidth $(-3 \mathrm{~dB})$ at 800 MHz on all channels
- Latch-up performance exceeds 100 mA per JESD 78, Class II
- ESD performance exceeds JESD22 - 2000-V Human body model (A114-A)
- USB (2.0) High speed (480Mbps) signal switching compliant

Description

The STG3682 is a high-speed CMOS low voltage dual analog S.P.D.T. (Single Pole Dual Throw) Switch or 2:1 Multiplexer /Demultiplexer Switch fabricated in silicon gate $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is designed to operate from 1.65 V to 4.3 V , making this device ideal for portable applications.
The nSEL inputs are provided to control the switch. The switch S1 is ON (they are connected to common Ports Dn) when the nSEL input is held high and OFF (high impedance state exists between the two ports) when SEL is held low; the switch S2 is ON (it is connected to common Port D) when the nSEL input is held low and OFF (high impedance state exists between the two ports) when nSEL is held high.

Additional key features are fast switching speed, Break Before Make Delay Time and Ultra Low Power Consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage.

Table 1. Device summary

Order code	Package	Packaging
STG3682QTR	QFN10 $(1.8 \mathrm{~mm} \times 1.4 \mathrm{~mm})$	Tape and reel

Contents

1 Pin settings 3
1.1 Pin connection 3
1.2 Pin description 3
2 Device summary 4
3 Maximum rating 5
3.1 Recommended operating conditions 5
4 Electrical characteristics 6
5 Test circuits 10
6 Package mechanical data 13
7 Revision history 18

1 Pin settings

1.1 Pin connection

Figure 1. Pin connection (top through view)

1.2 Pin description

Table 2. Pin description

Pin \mathbf{N}°	Symbol	Name and function
$1,3,6,8$	1S1, 1S2, 2S1, 2S2	Independent channels
2,7	D1,D2	Common channels
10,4	SEL1,SEL2	Control
9	VCC	Possitive supply voltage
5	GND	Ground (OV)

Note: \quad Exposed pad must be soldered to a floating plane. Do NOT connect to power or ground.

2 Device summary

Figure 2. Input equivalent circuit

Table 3. Truth table

SEL	Switch S1	Switch S2
H	ON	OFF $^{(1)}$
L	OFF $^{(1)}$	ON

1. High impedance

3 Maximum rating

Stressing the device above the rating listed in the "Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to 5.5	V
V_{1}	DC input voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$V_{\text {IC }}$	DC control input voltage	-0.5 to 5.5	V
V_{O}	DC output voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {IKC }}$	DC input diode current on control pin ($\mathrm{V}_{\text {SEL }}<0 \mathrm{~V}$)	-50	mA
I_{K}	DC input diode current ($\mathrm{V}_{\text {SEL }}<0 \mathrm{~V}$)	± 50	mA
I_{OK}	DC output diode current	± 20	mA
I_{0}	DC output current	± 128	mA
$\mathrm{I}_{\text {OP }}$	DC output current peak (pulse at $1 \mathrm{~ms}, 10 \%$ duty cycle)	± 300	mA
$\begin{aligned} & \mathrm{I}_{\mathrm{CC}} \text { or } \\ & \mathrm{I}_{\mathrm{GND}} \end{aligned}$	DC V_{CC} or ground current	± 100	mA
P_{D}	Power dissipation at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}{ }^{(1)}$	1120	mW
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
TL	Lead temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

1. Derate above $70^{\circ} \mathrm{C}$ by $18.5 \mathrm{~mW} / \mathrm{C}$

3.1 Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ${ }^{(1)}$	1.65 to 4.3	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	0 to V_{CC}	V
V_{IC}	Control input voltage	0 to 4.3	V
$\mathrm{~V}_{\mathrm{O}}$	Output voltage	0 to V_{CC}	V
T_{op}	Operating temperature	-40 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input rise and fall time control input	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.7 V	0 to 20
	$\mathrm{~V} / \mathrm{V} / \mathrm{V}$		

1. Truth Table guaranteed: 1.2 V to 4.3 V

4 Electrical characteristics

Table 6. DC specifications

Symbol	Parameter	Test conditions		Value					Unit
		Vcc (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
V_{IH}	High level input voltage	1.65-1.95		$0.65 \mathrm{~V}_{\text {cc }}$			$0.65 \mathrm{~V}_{\text {CC }}$		V
		2.3-2.5		1.2			1.2		
		2.7-3.0		1.3			1.3		
		3.3-3.6		1.4			1.4		
		4.3		1.6			1.6		
$\mathrm{V}_{\text {IL }}$	Low level input voltage	1.65-1.95				0.25			V
		2.3-2.5				0.25			
		2.7-3.0				0.25			
		3.3-3.6				0.30			
		4.3				0.40			
$\mathrm{R}_{\text {PEAK }}$	Switch ON peak resistance	1.8	$\begin{aligned} & V_{S}=0 V \text { to } V_{C C} \\ & I_{S}=8 \mathrm{~mA} \end{aligned}$		12.0	16.0			Ω
		2.7			6.3	8.0			
		3.0			5.8	7.5			
		3.7			5.0	6.5			
		4.3			4.6	6.0			
R_{ON}	Switch On resistance	3.0	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V} \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA}$		4.0	5.2			Ω
		3.0	$\mathrm{V}_{\mathrm{S}}=0.8 \mathrm{~V} \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA}$		5.0	6.5			
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON resistance match between channels ${ }^{(1)}$	1.8	$\begin{aligned} & V_{\mathrm{S}} @ R_{\mathrm{ON}} M a x \\ & \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} \end{aligned}$						Ω
		2.7							
		3.0			0.3				
		3.7							
		4.3							
$\mathrm{R}_{\text {FLAT }}$	ON resistance flatness ${ }^{(2)}$	1.8	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} \end{aligned}$		6.6				Ω
		2.7			2.0				
		3.0			1.7				
		3.7			1.5				
		4.3			1.6				
IOFF	OFF state leakage current (SN), (D)	4.3	$\mathrm{V}_{\mathrm{S}}=0.3$ or 4 V			± 20		± 100	nA

Table 6. DC specifications

Symbol	Parameter	Test conditions		Value					Unit
		Vcc (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
I_{IN}	Input leakage current	0 to 4.3	$\mathrm{V}_{\text {SEL }}=0$ to 4.3 V			± 0.1		± 1	$\mu \mathrm{A}$
I_{CC}	Quiescent supply current	1.65 to 4.3	$\mathrm{V}_{\text {SEL }}=\mathrm{V}_{\text {CC }}$ or GND			± 0.1		± 1.0	$\mu \mathrm{A}$
I CCLV	Quiescent supply current low voltage driving	4.3	$\begin{aligned} & \hline V_{1-2 \text { SEL, }} \\ & \mathrm{V}_{3-4 \mathrm{SEL}}=1.65 \mathrm{~V} \end{aligned}$		± 37	± 50		± 100	$\mu \mathrm{A}$
			$\begin{array}{\|l\|} \hline \mathrm{V}_{1-2 \mathrm{SEL},} \\ \mathrm{~V}_{3-4 \mathrm{SEL}}=1.80 \mathrm{~V} \end{array}$		± 33	± 40		± 50	
			$\begin{aligned} & \hline \mathrm{V}_{1-2 \mathrm{SEL},} \\ & \mathrm{~V}_{3-4 \mathrm{SEL}}=2.60 \mathrm{~V} \end{aligned}$		± 11	± 20		± 30	

1. Note 1: Δ Ron $=\max \operatorname{lmSN}-n S N I$, where $m=1 . .4$ and $n=1 . .4, N=1 . .2$
2. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

Table 7. AC electrical characteristics $\left(C_{L}=35 p F, R_{L}=50 \Omega, t_{r}=t_{f} \leq 5 n s\right)$

Symbol	Parameter	Test conditions		Value					Unit
		Vcc (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation delay	1.65-1.95			0.30				ns
		2.3-2.7			0.30				
		3.0-3.3			0.25				
		3.6-4.3			0.25				
${ }_{\text {ton }}$	Turn-ON time	1.65-1.95	$\mathrm{V}_{\mathrm{S}}=0.8 \mathrm{~V}$		31				ns
		2.3-2.7	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		20	26		34	
		3.0-3.3			15	20		26	
		3.6-4.3			12	15		20	
$t_{\text {OFF }}$	Turn-OFF time	1.65-1.95	$\mathrm{V}_{\mathrm{S}}=0.8$		22				ns
		2.3-2.7	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		14	18		23	
		3.0-3.3			11	14		18	
		3.6-4.3			10	13		17	
t_{D}	Break before make time delay	1.65-1.95	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=50 \Omega \\ \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \end{gathered}$	1	7				ns
		2.3-2.7		1	5				
		3.0-3.3		1	4				
		3.6-4.3		1	3				
Q	Charge injection	1.65	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$		2.8				pC
		2.3			3.5				
		3.0			3.8				
		4.3			5.0				

Table 8. Analog switch characteristics $\left(C_{L}=5 p F, R_{L}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Test conditions		Value					Unit
		Vcc (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
OIRR	OFF Isolation ${ }^{(1)}$	1.65-4.3	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS},} \mathrm{f}=1 \mathrm{MHz} \\ & \text { Signal }=0 \mathrm{dBm} \end{aligned}$		-79				dB
			$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS},} \mathrm{f}=10 \mathrm{MHz} \\ & \text { Signal }=0 \mathrm{dBm} \end{aligned}$		-60				
Xtalk	Crosstalk	1.65-4.3	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS},} \mathrm{f}=1 \mathrm{MHz} \\ & \text { Signal }=0 \mathrm{dBm} \end{aligned}$		-78				dB
			$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS},} \mathrm{f}=10 \mathrm{MHz} \\ & \text { Signal }=0 \mathrm{dBm} \end{aligned}$		-61				
BW	-3dB bandwidth	3.0-4.3	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \text { Signal }=0 \mathrm{dBm} \end{aligned}$		800				MHz
D_{G}	Differential gain	3.0-4.3	$R L=150 \Omega$		0.64				\%
D_{P}	Differential phase	3.0-4.3	$R L=150 \Omega$		0.1				deg
$\mathrm{C}_{\text {IN }}$	Control pin input capacitance		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		6.2				
C_{ON}	Sn Port capacitance when switch is enabled	3.3	$\mathrm{f}=1 \mathrm{MHz}$		12				pF
$\mathrm{C}_{\text {OFF }}$	Sn Port capacitance when switch is disabled	3.3	$\mathrm{f}=1 \mathrm{MHz}$		5				

1. Off Isolation $=20 \log 10\left(\mathrm{~V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{S}}\right), \mathrm{V}_{\mathrm{D}}=$ output. $\mathrm{V}_{\mathrm{S}}=$ input to off switch.

Table 9. USB related AC electrical characteristics

Symbol	Parameter	Test conditions		Value					Unit
		$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {SK(0) }}$	Channel-to-channel skew	3.0 to 3.6	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$		26				ps
${ }^{\text {tsk(P) }}$	Skew of opposite transition of the same output	3.0 to 3.6	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$		60				ps
T_{J}	Total jitter	3.0 to 3.6	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \\ \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=750 \mathrm{ps} \\ \text { at } 480 \mathrm{Mbps} \end{gathered}$		130				ps

5 Test circuits

Figure 3. ON-resistance

Figure 5. OFF leakage

Figure 4. Bandwidth

Figure 6. Channel to channel crosstalk

Figure 7. OFF isolation

Figure 8. Test circuit

Note: $1 C_{L}=5 / 35 \mathrm{pF}$ or equivalent: (includes jig capacitance)
$2 R_{L}=50 \Omega$ or equivalent
$3 R_{T}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)

Figure 9. Break-before-make time delay

Figure 10. Switching time and charge injection

$$
\left(\mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right)
$$

Figure 11. Turn ON, turn OFF delay time

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Table 10. QFN10L(1.8×1.4) Mechical data

ref.	mm			inch		
	Nom	Min	Max	Nom	Min	Max
A	0.50	0.45	0.55	0.020	0.017	0.021
A1	0.02	0	0.05	0.001	0	0.002
A3	0.127			0.005	0	0
b	0.20	0.15	0.25	0.007	0.006	0.010
D	1.80	1.70	1.90	0.070	0.066	0.074
E	1.40	1.30	1.50	0.055	0.051	0.059
e	0.40			0.015		
L	0.40	0.30	0.50	0.015	0.011	0.020

Figure 12. Package dimension

Figure 13. QFN10L (1.8mm $\times 1.4 \mathrm{~mm}$) foot print recommendation

Figure 14. QFN10L (1.8mm $\times 1.4 \mathrm{~mm}$) carrier type

$\xrightarrow{0.30}$

Figure 15. QFN10L(1.8mm x 1.4mm) reel information

Figure 16. QFN10L(1.8mm x 1.4mm) reel information

7 Revision history

Table 11. Revision history

Date	Revision	Changes
08-Jan-2007	1	First release
03-Jul-2007	2	Updated $\mathrm{C}_{\mathrm{ON}}, \mathrm{C}_{\text {OFF }}$ Table 8 on page 9

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC.125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ

