Low voltage high bandwidth quad DPDT switch

Datasheet - production data

Features

- Ultralow power dissipation
- $\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}$ (max.) at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
- Low "ON" resistance
- $\mathrm{R}_{\mathrm{ON}}=5.4 \Omega\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$
- $\mathrm{R}_{\mathrm{ON}}=6.6 \Omega\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
- Wide operating voltage range
$-\mathrm{V}_{\mathrm{CC}}$ (OPR.) $=1.65 \mathrm{~V}$ to 4.3 V
- 4.3 V tolerant and 1.8 V compatible threshold on digital control input at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 3.0 V
- 4 select pins controlling 2 switches each
- Typical bandwidth $(-3 \mathrm{~dB})$ at 800 MHz on all channels
- USB (2.0) high speed (480 Mbps) signal switching compliant
- Integrated fail safe function
- Latch-up performance exceeds 100 mA per JESD 78, Class II
- ESD performance exceeds JESD22 2000-V human body model (A114-A)

Description

The STG3820 device is a high-speed CMOS low voltage quad analog DPDT (dual pole dual throw) switch or 2:1 multiplexer/demultiplexer switch fabricated in silicon gate C^{2} MOS technology. It is designed to operate from 1.65 V to 4.3 V , making this device ideal for portable applications.

The SELm-n input is provided to control the switches. The switches nS 1 and mS 1 are ON (connected to common ports Dn and Dm respectively) when the SELm-n input is held high and OFF (high impedance state exists between the two ports) when the SELm-n is held low. The switches nS 2 and mS 2 are ON (connected to common port Dn and Dm respectively) when the SELm-n input is held low and OFF (high impedance state exists between the two ports) when the SELm-n is held high.
The STG3820 device has an integrated fail safe function to withstand overvoltage condition when the device is powered off. Additional key features are fast switching speed, break-before-makedelay time and ultralow power consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage.

Table 1. Device summary

Order code	Package	Packing
STG3820BJR	Flip Chip 30 $(2.0 \times 2.4 \mathrm{~mm})$	Tape and reel

Applications

- Mobile phones

Contents

1 Pin settings 3
1.1 Pin connection 3
1.2 Pin description 3
2 Logic diagram 5
3 Maximum ratings 6
Recommended operating conditions 6
4 Electrical characteristics 7
5 Test circuits 12
6 Package information 16
7 Revision history 19

1
 Pin settings

1.1 Pin connection

Figure 1. Pin connection

1.2 Pin description

Table 2. Pin assignment

Pin number	Symbol	Name and function
A1	1S1	Independent channel for switch 1
A2	D1	Common channel for switch 1
A3	1 S2	Independent channel for switch 1
A4	5 S2	Independent channel for switch 5
A5	D5	Common channel for switch 5
A6	5 S1	Independent channel for switch 5
B1	2 S1	Independent channel for switch 2
B2	D2	Common channel for switch 2
B3	2 S2	Independent channel for switch 2
B4	$6 S 2$	Independent channel for switch 6
B5	D6	Common channel for switch 6
B6	$6 S 1$	Independent channel for switch 6

Table 2. Pin assignment (continued)

Pin number	Symbol	Name and function
C1	SEL1-2	Switch 1-2 selection control
C2	VCC	Positive supply voltage
C3	SEL3-4	Switch 3-4 selection control
C4	SEL5-6	Switch 5-6 selection control
C5	GND	Ground (0 V)
C6	SEL7-8	Switch 7-8 selection control
D1	3S1	Independent channel for switch 3
D2	D3	Common channel for switch 3
D3	3S2	Independent channel for switch 3
D4	7S2	Independent channel for switch 7
D5	D7	Common channel for switch 7
D6	7S1	Independent channel for switch 7
E1	4 S1	Independent channel for switch 4
E2	D4	Common channel for switch 4
E3	4 S2	Independent channel for switch 4
E4	8 82	Independent channel for switch 8
E5	D8	Common channel for switch 8
E6	8 81	Independent channel for switch 8

2 Logic diagram

Figure 2. Logic equivalent circuit

Table 3. Truth table

SEL	Switch nS1	Switch ns2
H	ON	OFF $^{(1)}$
L	OFF $^{(1)}$	ON

1. High impedance.

3 Maximum ratings

Stressing the device above the rating listed in Table 4: Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in Table 5: Recommended operating conditions of this specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	-0.5 to 6.0	V
V_{1}	DC input voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$V_{\text {IC }}$	DC control input voltage	-0.5 to 5.5	V
V_{O}	DC output voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {IKC }}$	DC input diode current on control pin ($\mathrm{V}_{\text {SEL }}<0 \mathrm{~V}$)	-50	mA
I_{IK}	DC input diode current ($\mathrm{V}_{\text {SEL }}<0 \mathrm{~V}$)	± 50	mA
lok	DC output diode current	± 20	mA
I_{0}	DC output current	± 128	mA
IOP	DC output current peak (pulse at $1 \mathrm{~ms}, 10 \%$ duty cycle)	± 300	mA
$\mathrm{I}_{\text {CC }}$ or $\mathrm{I}_{\text {GND }}$	DC $V_{\text {CC }}$ or ground current	± 100	mA
$P_{\text {D }}$	Power dissipation at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	1120	mW
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead temperature (10 sec.)	300	${ }^{\circ} \mathrm{C}$

Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	1.65 to 4.3	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	0 to V_{CC}	V
V_{IC}	Control input voltage	0 to 4.3	V
$\mathrm{~V}_{\mathrm{O}}$	Output voltage	0 to V_{CC}	V
T_{op}	Operating temperature	-40 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input rise and fall time control input	$\mathrm{V}_{\mathrm{L}}=1.65 \mathrm{~V}$ to 2.7 V	0 to 20
	$\mathrm{~V} / \mathrm{ns} / \mathrm{V}$		

4 Electrical characteristics

Table 6. DC specifications

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Test conditions	Value					Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	
V_{IH}	High level input voltage	1.65-1.95		$\begin{aligned} & 0.65 \\ & V_{C C} \end{aligned}$	-	-	$\begin{aligned} & 0.65 \\ & V_{C C} \end{aligned}$	-	V
		2.3-2.5		1.2	-	-	1.2	-	
		2.7-3.0		1.3	-	-	1.3	-	
		3.3-3.6		1.4	-	-	1.4	-	
		4.3		1.6	-	-	1.6	-	
$\mathrm{V}_{\text {IL }}$	Low level input voltage	1.65-1.95		-	-	0.25	-	0.25	V
		2.3-2.5		-	-	0.25	-	0.25	
		2.7-3.0		-	-	0.25	-	0.25	
		3.3-3.6		-	-	0.30	-	0.30	
		4.3		-	-	0.40	-	0.40	
$\mathrm{R}_{\text {PEAK }}$	Switch ON peak resistance	1.8	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} \end{gathered}$	-	17.0	19.6	-	-	Ω
		2.7		-	7.5	8.7	-	-	
		3.0		-	6.6	7.6	-	-	
		3.7		-	5.8	6.7	-	-	
		4.3		-	5.4	6.2	-	-	
R_{ON}	Switch ON resistance	3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} \end{aligned}$	-	5.1	5.8	-	-	Ω
		3.0	$\begin{aligned} \mathrm{V}_{\mathrm{S}} & =0.4 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}} & =8 \mathrm{~mA} \end{aligned}$	-	6.3	7.3	-	-	
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON resistance match between channels ${ }^{(1)}$	1.8	$\begin{gathered} \mathrm{V}_{\mathrm{S}} \text { at } \mathrm{R}_{\mathrm{ON}} \mathrm{MAX} \\ \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} \end{gathered}$	-	-	-	-	-	Ω
		2.7		-	-	-	-	-	
		3.0		-	0.3	-	-	-	
		3.7		-	-	-	-	-	
		4.3		-	-	-	-	-	

Table 6. DC specifications (continued)

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Test conditions	Value					Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	
$\mathrm{R}_{\text {FLAT }}$	ON resistance flatness ${ }^{(2)}$	1.8	$\begin{gathered} \hline \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \\ 0.4 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} \end{gathered}$	-	4.5	-	-	-	Ω
		1.8	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} \end{gathered}$	-	9.5	-	-	-	
		2.7		-	2.2	-	-	-	
		3.0		-	1.8	-	-	-	
		3.7		-	1.6	-	-	-	
		4.3		-	1.6	-	-	-	
IOFF	OFF state leakage current (Sn), (D)	4.3	$\mathrm{V}_{\mathrm{S}}=0.3$ or 4 V	-20	-	20	-100	100	nA
I_{N}	Input leakage current	0 to 4.3	$\begin{gathered} \mathrm{V}_{\mathrm{SEL}}=0 \text { to } \\ 4.3 \mathrm{~V} \end{gathered}$	-0.2	-	0.2	-1.0	1.0	$\mu \mathrm{A}$
I_{Cc}	Quiescent supply current	1.65 to 4.3	$V_{S E L}=V_{C C} \text { or }$ GND	-0.2	-	0.2	-1.0	1.0	$\mu \mathrm{A}$
ICCLV	Quiescent supply current for low voltage driving ${ }^{(3)}$	4.3	$\mathrm{V}_{\mathrm{SEL}}=1.65 \mathrm{~V}$	-	± 37	± 50	-	± 100	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{SEL}}=1.80 \mathrm{~V}$	-	± 33	± 40	-	± 50	
			$\mathrm{V}_{\text {SEL }}=2.60 \mathrm{~V}$	-	± 11	± 20	-	± 30	

1. $\Delta R_{\mathrm{ON}}=\max .|\mathrm{mSN}-\mathrm{nSN}|$, where $\mathrm{m}=1$ to 8 and $\mathrm{n}=1$ to $8, \mathrm{~N}=1,2$.
2. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
3. Measurement is for one SEL pin.

Table 7. AC electrical characteristics ($\left.C_{L}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}\right)$

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Test conditions	Value					Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	
$t_{\text {PLH, }}{ }^{\text {t }}$ PHL	Propagation delay	1.65-1.95		-	0.21	-	-	-	ns
		2.3-2.7		-	0.15	-	-	-	
		3.0-3.3		-	0.14	-	-	-	
		3.6-4.3		-	0.13	-	-	-	
t_{ON}	Turn-on time	1.65-1.95	$\mathrm{V}_{\mathrm{S}}=0.8 \mathrm{~V}$	-	36	-	-	-	ns
		2.3-2.7	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$	-	20	23	-	26	
		3.0-3.3		-	15	17	-	20	
		3.6-4.3		-	13	15	-	17	
$\mathrm{t}_{\text {OFF }}$	Turn-off time	1.65-1.95	$\mathrm{V}_{\mathrm{S}}=0.8 \mathrm{~V}$	-	29	-	-	-	ns
		2.3-2.7	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$	-	19	22	-	25	
		3.0-3.3		-	14	16	-	18	
		3.6-4.3		-	11	13	-	14	
t_{D}	Break-beforemake time delay	1.65-1.95	$\begin{aligned} C_{L} & =35 \mathrm{pF} \\ R_{L} & =50 \Omega \\ V_{S} & =1.5 \mathrm{~V} \end{aligned}$	-	10	-	-	-	ns
		2.3-2.7		-	7	-	-	-	
		3.0-3.3		-	6	-	-	-	
		3.6-4.3		-	4	-	-	-	
Q	Charge injection	1.65	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	-	3.9	-	-	-	pC
		2.3		-	4.8	-	-	-	
		3.0		-	5.2	-	-	-	
		4.3		-	6.4	-	-	-	

Table 8. AC electrical characteristics ($C_{L}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Test conditions	Value					Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	
OIRR	OFF isolation ${ }^{(1)}$	1.65-4.3	$\begin{gathered} V_{S}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ \mathrm{f}=1 \mathrm{MHz} \\ \text { signal }=0 \mathrm{dBm} \end{gathered}$	-	-78	-	-	-	dB
			$\begin{gathered} V_{S}=1 V_{R M S} \\ f=10 \mathrm{MHz} \\ \text { signal }=0 \mathrm{dBm} \end{gathered}$	-	-57	-	-	-	
Xtalk	Crosstalk	1.65-4.3	$\begin{gathered} V_{S}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ \mathrm{f}=1 \mathrm{MHz} \\ \text { signal }=0 \mathrm{dBm} \end{gathered}$	-	-78	-	-	-	dB
			$\begin{gathered} V_{S}=1 V_{R M S}, \\ f=10 \mathrm{MHz} \\ \text { signal }=0 \mathrm{dBm} \end{gathered}$	-	-58	-	-	-	
BW	-3dB bandwidth	$3.0-4.3$	$\begin{gathered} R_{\mathrm{L}}=50 \Omega \\ \text { signal }=0 \mathrm{dBm} \end{gathered}$	-	800	-	-	-	MHz
$\mathrm{C}_{\text {IN }}$	Control pin input capacitance		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	2	-	-	-	pF
$\mathrm{C}_{\text {Sn }}$	Sn port capacitance	3.3	$\mathrm{F}=240 \mathrm{MHz},$ switch is enabled	-	6	-	-	-	pF
			$\mathrm{F}=240 \mathrm{MHz},$ switch is disabled	-	2	-	-	-	
C_{D}	D port capacitance	3.3	$\mathrm{F}=240 \mathrm{MHz}$	-	8	-	-	-	pF

1. Off isolation $=20 \log 10\left(\mathrm{~V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{S}}\right), \mathrm{V}_{\mathrm{D}}=$ output, $\mathrm{V}_{\mathrm{S}}=$ input to off switch.

Table 9. USB related AC electrical characteristics

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Test conditions	Value					Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	
${ }^{\text {tsk }}$ (0)	Channel-tochannel skew	3.0-3.6	$C_{L}=10 \mathrm{pF}$	-	26	-	-	-	ps
$\mathrm{t}_{\text {SK(P) }}$	Skew of opposite transition of the same output	3.0-3.6	$C_{L}=10 \mathrm{pF}$	-	60	-	-	-	ps
TJ	Total jitter	3.0-3.6	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=50 \Omega \\ \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \\ \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=750 \mathrm{ps} \\ \text { at } 480 \mathrm{Mbps} \end{gathered}$	-	130	-	-	-	ps

5 Test circuits

Figure 3. On-resistance

Figure 4. Bandwidth

Figure 5. Off leakage

Figure 6. Channel to channel crosstalk

Figure 7. Off isolation

Figure 8. Test circuit

Note: $\quad C_{L}=5 / 35 \mathrm{pF}$ or equivalent: (includes jig capacitance).
$R_{L}=50 \Omega$ or equivalent.
$R_{T}=Z_{\text {OUT }}$ of pulse generator (typically 50Ω).

Figure 9. Break-before-make time delay

Figure 10. Switching time and charge injection ($\mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$)

Figure 11. Turn-on, turn-off delay time

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Figure 12. Package outline for Flip Chip $30(2.0 \times 2.4 \times 0.625 \mathrm{~mm})-0.4 \mathrm{~mm}$ pitch

Table 10. Mechanical data for Flip Chip $30(2.0 \times 2.4 \times 0.625 \mathrm{~mm})-0.4 \mathrm{~mm}$ pitch

Symbol	Dimensions (mm)		
	Min.	Typ.	Max.
A	0.565	0.625	0.685
A1	0.17	0.205	0.24
A2	0.355	0.375	0.395
b	0.215	0.255	0.295
D	2.1	2.4	2.43
D1	-	2.0	-
E	1.97	2.0	2.03
E1	-	1.6	-
e	0.36	0.4	0.44
f	0.19	0.2	0.21
ccc	-	0.05	-
$\$$	0.040	0.045	0.05

Figure 13. Footprint recommendations for Flip Chip $30(2.0 \times 2.4 \times 0.625 \mathrm{~mm})-0.4 \mathrm{~mm}$ pitch

Figure 14. Tape information for Flip Chip $30(2.0 \times 2.4 \times 0.625 \mathrm{~mm})-0.4 \mathrm{~mm}$ pitch

Figure 15. Reel information for Flip Chip $30(2.0 \times 2.4 \times 0.625 \mathrm{~mm})-0.4 \mathrm{~mm}$ pitch

7 Revision history

Table 11. Document revision history

Date	Revision	Changes
18-Dec-2009	1	Initial release.
19-Jan-2011	2	Document reformatted, added Contents, updated Figure 12 and Figure 13, corrected typo in Features, Table 1, Section 1: Pin settings, Table 2, Table 7, Table 8, notes below Figure 8, title of Figure 11, Figure 12, Table 10, and Figure 13, corrected name of "Table 11" to Figure 13.
23-Apr-2013	3	Moved Description to page 1. Redrawn Figure 1. Updated Section 3 (added/updated cross-references, updated V $_{\text {CC }}$ value in Table 4). Redrawn Figure 12 to Figure 15. Updated Figure 12 (removed superfluous reference to note). Updated title of Figure 14 and Figure 15 (added "Flip Chip 30 (2.0 x 2.4 x 0.625 mm) - 0.4 mm pitch"). Minor corrections throughout document.
06-Aug-2013	4	Updated Table 8 on page 10 (replaced Con and CoFF symbol by C

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC.125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ

[^0]: © 2013 STMicroelectronics - All rights reserved

 STMicroelectronics group of companies
 Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

