Low voltage 1.0Ω max dual SP3T switch with break-before-make feature

Features

- High speed:
- $\mathrm{t}_{\mathrm{PD}}=0.3 \mathrm{~ns}$ (typ.) at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
- $\mathrm{t}_{\mathrm{PD}}=0.4 \mathrm{~ns}$ (typ.) at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
- Ultra low power dissipation:
- $\mathrm{I}_{\mathrm{CC}}=0.2 \mu \mathrm{~A}$ (max.) at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
- Low ON resistance $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$:
$-R_{\mathrm{ON}}=1.0 \Omega\left(\max . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$
$-\mathrm{R}_{\mathrm{ON}}=1.5 \Omega\left(\max . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
$-\mathrm{R}_{\mathrm{ON}}=1.8 \Omega\left(\max . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
- Wide operating voltage range:
- $\mathrm{V}_{\mathrm{CC}}(\mathrm{opr})=1.65 \mathrm{~V}$ to 4.3 V single supply

■ 4.3 V tolerant and 1.8 V compatible threshold on digital control input at $\mathrm{V}_{\mathrm{CC}}=2.3$ to 4.3 V
■ Latch-up performance exceeds 300 mA (JESD 17)
■ ESD performance (analog channel vs. GND): HBM > 2 kV (MIL STD 883 method 3015)

Description

The STG3856 is a high-speed CMOS low voltage dual analog SP3T (single pole triple throw) switch or dual 3:1 multiplexer/demultiplexer switch fabricated in silicon gate $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is designed to operate from 1.65 V to 4.3 V , making this device ideal for portable applications.

The device offers very low ON resistance $(<1.0 \Omega)$ at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$. The disabling and enabling of switches are done by setting the 1 IN and 2 IN control pins. Additional key features are fast switching speed, and ultra low power consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage.

Table 1. Device summary

Order code	Temperature range	Package	Packaging
STG3856QTR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	QFN12L $(2.2 \times 1.4 \mathrm{~mm})$	Tape and reel

1 Summary description

1.1 Pin connections and description

Figure 1. Connection diagram (top through view)

Table 2. Pin description

Pin	Symbol	Name and function
12,10	$1 \mathrm{IN}, 2 \mathrm{IN}$	Controls
$1,2,3,9,8,7$	1S1, 1S2, 1S3, 2S1, 2S2, 2S3	Independent channels
4,6	D1, D2	Common channels
11	$\mathrm{~V}_{\mathrm{CC}}$	Positive supply voltage
5	GND	Ground (0 V)

1.2 Truth table

Table 3. Truth table

1IN	2IN	Switch state
L	L	High impedance
L	H	D1-1S1, D2-2S1
H	L	D1-1S2, D2-2S2
H	H	D1-1S3, D2-2S3

1.3 Internal schematic

Figure 2. Internal schematic

1.4 Input equivalent circuit

Figure 3. Input equivalent circuit

2 Maximum ratings

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	-0.5 to 5.5	V
V_{1}	DC Input voltage	-0.5 to $V_{C C}+0.5$	V
$V_{\text {IC }}$	DC Control input voltage	-0.5 to 5.5	V
V_{O}	DC output voltage	-0.5 to $V_{C C}+0.5$	V
$\mathrm{I}_{\text {IKC }}$	DC input diode current on control pin $\left(\mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}\right)$	- 50	mA
I_{IK}	DC input diode current ($\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$)	± 50	mA
l_{OK}	DC output diode current	± 20	mA
I_{0}	DC output current	± 150	mA
l OP	DC output current peak (pulse at 1 ms , 10% duty cycle)	± 300	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC $\mathrm{V}_{\text {CC }}$ or ground current	± 100	mA
P_{D}	Power dissipation at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}{ }^{(1)}$		mW
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

1. Derate above $70^{\circ} \mathrm{C}$ by $18.5 \mathrm{~mW} / \mathrm{C}$.

3 Electrical characteristics

Table 5. Recommended operating conditions

Symbol	Parameter		Value	Unit
V_{CC}	Supply voltage ${ }^{(1)}$		1.4 to 4.3	V
V_{1}	Input voltage		0 to V_{CC}	V
$V_{\text {IC }}$	Control input voltage		0 to V_{CC}	V
V_{O}	Output voltage		0 to V_{CC}	V
T_{OP}	Operating temperature		-55 to 125	${ }^{\circ} \mathrm{C}$
dt/dv	Input rise and fall time control input	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } \\ 2.7 \mathrm{~V} \end{gathered}$	0 to 20	ns / V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \text { to } \\ & 4.3 \mathrm{~V} \end{aligned}$	0 to 10	

1. Truth table guaranteed: 1.2 V to 4.3 V .

3.1 DC electrical characteristics

Table 6. DC electrical characteristics

$\begin{gathered} \text { Symb } \\ \text { ol } \end{gathered}$	Parameter	Test condition		Value							Unit
		$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	High level input voltage	$\begin{gathered} \hline 1.65- \\ 1.95 \end{gathered}$		$\begin{aligned} & 0.65 \\ & \mathrm{~V}_{\mathrm{Cc}} \end{aligned}$	-	-	$\begin{gathered} 0.65 \mathrm{~V} \\ c c \end{gathered}$	-	$\begin{gathered} \hline 0.65 \mathrm{~V} \\ c \mathrm{c} \end{gathered}$	-	V
		$\begin{array}{r} \hline 2.3- \\ 2.5 \end{array}$		1.4	-	-	1.4	-	1.4	-	
		$\begin{gathered} \hline 2.7- \\ 3.0 \end{gathered}$		1.4	-	-	1.4	-	1.4	-	
		$\begin{array}{r} 3.3- \\ 4.3 \end{array}$		1.5	-	-	1.5	-	1.5	-	
$\mathrm{V}_{\text {IL }}$	Low level input voltage	$\begin{gathered} 1.65- \\ 1.95 \end{gathered}$		-	-	0.40	-	0.40	-	0.40	V
		$\begin{array}{r} \hline 2.3- \\ 2.5 \end{array}$		-	-	0.50	-	0.50	-	0.50	
		$\begin{array}{r} 2.7- \\ 3.0 \end{array}$		-	-	0.50	-	0.50	-	0.50	
		$\begin{array}{r} 3.3- \\ 4.3 \end{array}$		-	-	0.50	-	0.50	-	0.50	

Table 6. DC electrical characteristics (continued)

$\begin{array}{\|c} \text { Symb } \\ \text { ol } \end{array}$	Parameter	Test condition		Value							Unit
		$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
R_{ON}	Switch ON resistance	4.3	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \\ \text { to } \mathrm{V}_{\mathrm{CC}} \\ \mathrm{I}_{\mathrm{S}}=100 \\ \mathrm{~mA} \end{gathered}$	-	0.6	1.0	-	1.2	-	-	Ω
		3.0		-	1.3	1.5	-	1.8	-	-	
		2.7		-	1.5	1.8	-	2.2	-	-	
		2.3		-	2.0	2.2	-	2.6	-	-	
		1.8		-	2.5	3.0	-	3.6	-	-	
		1.65		-	3.3	4.0	-	4.8	-	-	
$\Delta \mathrm{R}_{\text {ON }}$	ON resistance match between channels	2.7	V_{S} at R on max $\begin{gathered} \mathrm{I}_{\mathrm{S}}=100 \\ \mathrm{~mA} \end{gathered}$	-	0.01	-	-	-	-	-	Ω
$\mathrm{R}_{\mathrm{FLAT}}$	ON resistance flatness (1)(2)	4.3	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \\ \text { to } \mathrm{V}_{\mathrm{CC}} \\ \mathrm{I}_{\mathrm{S}}=100 \\ \mathrm{~mA} \end{gathered}$	-	-	-	-	-	-	-	Ω
		3.0		-	-	-	-	-	-	-	
		2.7		-	0.22	0.35	-	0.35	-	-	
		2.3		-	-	-	-	-	-	-	
		1.65		-	-	-	-	-	-	-	
IofF	OFF state leakage current (nSN), (Dn)	4.3	$\begin{array}{\|c\|} \hline V_{S}=0.3 \\ \text { or } 4 \mathrm{~V} \end{array}$	-	-	± 20	-	$\begin{array}{\|c} \pm 10 \\ 0 \end{array}$	-	-	nA
I_{IN}	Input leakage current	0-4.3	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0 \\ \text { to } 4.3 \mathrm{~V} \end{gathered}$	-	-	± 0.1	-	± 1	-		$\mu \mathrm{A}$
I_{CC}	Quiescent supply current	$\begin{gathered} 1.65- \\ 4.3 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{C}} \\ \mathrm{C} \text { or } \\ \text { GND } \end{gathered}$	-	-	$\begin{gathered} \pm 0.0 \\ 5 \end{gathered}$	-	$\begin{gathered} \pm 0 . \\ 2 \end{gathered}$	-	± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCLV }}$	Quiescent supply current low voltage driving	4.3	$\begin{array}{\|c\|} \hline \mathrm{V}_{\text {IN } 1}, \\ \mathrm{~V}_{\text {IN } 2}=1 \\ .65 \mathrm{~V} \end{array}$	-	± 37	± 50	-	$\begin{gathered} \pm 10 \\ 0 \end{gathered}$	-	-	$\mu \mathrm{A}$
			$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{IN} 1}, \\ \mathrm{~V}_{\mathrm{IN} 2}=1 . \\ 80 \mathrm{~V} \end{array}$	-	± 33	± 40	-	± 50	-	-	
			$\mathrm{V}_{\mathrm{IN} 1}$, $\mathrm{V}_{\mathrm{IN} 2}=2$. 60 V	-	± 12	± 20	-	± 30	-	-	

1. Δ Ron $=\max \operatorname{lmSN}-n S N I$, where $m=1$ and $n=2, N=1 . .3$
2. Flatness is defined as the difference between the maximum and minimum value of ON resistance as measured over the specified analog signal ranges.

3.2 AC electrical characteristics

Table 7. $\quad A C$ electrical characteristics $\left(C_{L}=35 p F, R_{L}=50 \Omega, t_{r}=t_{f} \leq 5 n s\right)$

Symbol	Parameter	Test condition		Value							Unit
		V_{Cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
$t_{\text {PLH }}$, ${ }_{\text {tpHL }}$	Propagation delay	$\begin{gathered} 1.65- \\ 1.95 \end{gathered}$		-	0.45	-	-	-	-	-	ns
		2.3-2.7		-	0.40	-	-	-	-	-	
		3.0-3.3		-	0.30	-	-	-	-	-	
		3.6-4.3		-	0.30	-	-	-	-	-	
t_{ON}	Turn-ON time	$\begin{gathered} 1.65- \\ 1.95 \end{gathered}$	$\mathrm{V}_{\mathrm{S}}=0.8 \mathrm{~V}$	-	56	-	-	-	-	-	ns
		2.3-2.7	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$	-	33	50	-	60	-	-	
		3.0-3.3		-	21	40	-	50	-	-	
		3.6-4.3		-	19	40	-	50	-	-	
$\mathrm{t}_{\text {OFF }}$	Turn-OFF time	$\begin{gathered} 1.65- \\ 1.95 \end{gathered}$	$\mathrm{V}_{\mathrm{S}}=0.8$	-	24	-	-		-	-	ns
		2.3-2.7	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$	-	17	25	-	40	-	-	
		3.0-3.3		-	14	20	-	30	-	-	
		3.6-4.3		-	12	20	-	30	-	-	
t_{D}	Break-before make time delay	$\begin{gathered} 1.65- \\ 1.95 \end{gathered}$	$\mathrm{V}_{\mathrm{S}}=0.8$	10	31	-	-	-	-	-	ns
		2.3-2.7	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$	10	22	40	-	50	-	-	
		3.0-3.3		10	18	30	-	40	-	-	
		3.6-4.3		10	7	25	-	35	-	-	
Q	Charge injection	$\begin{gathered} 1.65- \\ 1.95 \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{MO} \\ \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{gathered}$	-	25	-	-	-	-	-	pC
		2.3-2.7		-	35	-	-	-	-	-	
		3.0-3.3		-	40	-	-	-	-	-	
		3.6-4.3		-	55	-	-	-	-	-	

3.3 Analog switch

Table 8. Analog switch characteristics ($C_{L}=5$ p $F, R_{L}=50 \Omega T_{A}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test condition		Value							Unit
		V_{cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{O}_{\text {IRR }}$	Off Isolation ${ }^{(1)}$	1.65-4.3	$\begin{aligned} & V_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS}} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	-	-82	-	-	-	-	-	dB
$\mathrm{X}_{\text {talk }}$	Crosstalk	1.6-4.3	$\begin{aligned} & V_{S}=1 V_{R M S} \\ & f=100 \mathrm{kHz} \end{aligned}$	-	-84	-	-	-	-	-	dB
T_{HD}	Total harmonic distortion	2.3-4.3	$\begin{gathered} R_{L}=600 \Omega \\ V_{I N}=2 V_{P P} \\ f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{gathered}$	-	0.03	-	-	-	-	-	\%
BW	-3dB bandwidth	1.65-4.3	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	-	100	-	-	-	-	-	MHz
$\mathrm{C}_{\text {IN }}$	Control pin input capacitance			-	5	-	-	-	-	-	
$\mathrm{C}_{\text {Sn(OFF) }}$	Sn port OFF capacitance	3.3	$\mathrm{f}=1 \mathrm{MHz}$	-	-	-	-	-	-	-	
$\mathrm{C}_{\text {Sn(ON) }}$	Sn port ON capacitance	3.3	$\mathrm{f}=1 \mathrm{MHz}$	-	-	-	-	-	-	-	pF
$C_{\text {D }}$	D port capacitance when switch is enabled	3.3	$\mathrm{f}=1 \mathrm{MHz}$	-	-	-	-	-	-	-	

1. OFF Isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{S}}\right), \mathrm{V}_{\mathrm{D}}=$ output, $\mathrm{V}_{\mathrm{S}}=$ input at off switch

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

Figure 4. QFN12L (2.2 $\times 1.4 \mathrm{~mm}$) package outline

Table 9. FN12L ($2.2 \times 1.4 \mathrm{~mm}$) mechanical data

Symbol	Millimeters			Inches		
	Min	Typ	Max	Min	Typ	Max
A	0.50	0.55	0.60	0.019	0.021	0.023
A1	0	0.02	0.05	0	0.001	0.002
b	0.15	0.20	0.25	0.006	0.007	0.010
D	1.30	1.40	1.50	0.051	0.055	0.059
E	2.10	2.20	2.30	0.082	0.086	0.090
e		0.40			0.015	
L	0.35	0.40	0.45	0.013	0.015	0.017

Figure 5. Footprint recommendation

Figure 6. QFN12L ($2.2 \times 1.4 \mathrm{~mm}$) reel for carrier tape information

Figure 7. QFN12L ($2.2 \times 1.4 \mathrm{~mm}$) reel for carrier tape information

Figure 8. QFN12L ($2.2 \times 1.4 \mathrm{~mm}$) carrier tape information

* o sprocket hole pitch cumulative tolerance ± 0.20

5 Revision history

Table 10. Document revision history

Date	Revision	Changes
22-Dec-2005	1	First draft.
23-Dec-2005	2	Few changes.
15-Mar-2010	3	The document has been reformatted, added tape and reel information.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC.125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ

