Low voltage 0.5Ω dual SPDT switch with break-before-make feature and 15 kV ESD protection

Features

- Wide operating voltage range:
$\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=1.65$ to 4.8 V
- Low power dissipation:
$\mathrm{I}_{\mathrm{CC}}=0.2 \mu \mathrm{~A}$ (max.) at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
■ Low "ON" resistance:
$-\mathrm{R}_{\mathrm{ON}}=0.75 \Omega\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V}$
$-R_{\mathrm{ON}}=0.50 \Omega\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
$-\mathrm{R}_{\mathrm{ON}}=0.40 \Omega\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$
- Separate supply voltage for switch and control pin

■ Latch-up performance exceeds 100 mA per JESD 78, Class II

- ESD performance tested on common pin (D pin):
- 15 kV IEC-61000-4-2 ESD, contact discharge
- 8 kV HBM JESD22 A114-B Class II
- ESD performance tested on S1 and S2 pin:
- 8 kV IEC-61000-4-2 ESD, contact discharge
ESD performance test on all other pins:
- 4 kV HBM (JESD22 A114-B Class II)
- 400 V machine model (JESD22 A115-A)
- 1500 V charged-device model (JESD22 C101)

Applications

- Mobile phones

Flip-chip 12

Description

The STG4260 is a high-speed CMOS low voltage dual analog SPDT (single pole dual throw) switch or 2:1 multiplexer/demultiplexer switch fabricated in silicon gate $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is designed to operate from 1.65 V to 4.8 V , making this device ideal for portable applications. It offers low ONresistance (0.40Ω typ.) at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$. The SEL inputs are provided to control the switches.

The switch S1 is ON (connected to common port D) when the SEL input is held high and OFF (high impedance state exists between the two ports) when SEL is held low; the switch S 2 is ON (it is connected to common Port D) when the SEL input is held low and OFF (high impedance state exists between the two ports) when SEL is held high.
Additional key features are fast switching speed, break-before-make delay time and ultra low power consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage.

Table 1. Device summary

Order code	Package	Packing
STG4260BJR	Flip-chip 12	Tape and reel

Contents

1 Pin settings 3
1.1 Pin connections 3
1.2 Pin description 3
2 Logic diagram 4
3 Maximum ratings 5
4 Electrical characteristics 6
5 Test circuits 10
6 Package mechanical data 14
7 Revision history 18

1
 Pin settings

1.1 Pin connections

Figure 1. Pin connection

Bump view

Top view

1.2 Pin description

Table 2. Pin assignment

Pin number	Symbol	Name and function
1	SEL2	Selection control for switch 2
2	V $_{\text {L }}$	Logic supply voltage
3	SEL1	Selection control for switch 1
4	1 S1	Independent channel for switch 1
5	GND	Ground (0 V)
6	$2 S 1$	Independent channel for switch 2
7	D2	Common channel for switch 2
8	GND	Ground (0 V)
9	D1	Common channel for switch 1
10	$1 S 2$	Independent channel for switch 1
11	V CC	2S2
12		Independent channel for switch 2

2 Logic diagram

Figure 2. Functional diagram

Figure 3. Circuit equivalent logic

Table 3. Truth table

SEL	Switch S1	Switch S2
H	ON	OFF $^{(1)}$
L	OFF $^{(1)}$	ON

1. High impedance

3 Maximum ratings

Stressing the device above the rating listed in the "Absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	-0.5 to 5.5	V
$\mathrm{~V}_{\mathrm{L}}$	Logic supply voltage	-0.5 to 5.5	V
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{IC}}$	DC control input voltage	-0.5 to $\mathrm{V}_{\mathrm{L}}+5.5$	V
$\mathrm{~V}_{\mathrm{O}}$	DC output voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\mathrm{IKC}}$	DC input diode current on control pin $\left(\mathrm{V}_{\mathrm{SEL}}<0 \mathrm{~V}\right)$	-50	mA
I_{IK}	DC input diode current $\left(\mathrm{V}_{\mathrm{SEL}}<0 \mathrm{~V}\right)$	± 50	mA
I_{OK}	DC output diode current	± 20	mA
I_{O}	DC output current	± 300	mA
I_{OP}	DC output current peak (pulse at 1ms, 10% duty cycle)	± 500	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or ground current	± 100	mA
P_{D}	Power dissipation at $\mathrm{T}_{\mathrm{A}}=70^{\circ}{ }^{\circ}{ }^{(1)}$	500	mW
$\mathrm{~T}_{\mathrm{stg}}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead temperature (10 sec)	260	${ }^{\circ} \mathrm{C}$

1. Derate above $70{ }^{\circ} \mathrm{C}$ by $18.5 \mathrm{~mW} / \mathrm{C}$

Table 5. Recommended operating conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	1.65 to 4.8	V
$\mathrm{~V}_{\mathrm{L}}$	Logic supply voltage ${ }^{(1)}$	1.65 to V_{CC}	V
V_{I}	Input voltage	0 to V_{CC}	V
V_{IC}	Control input voltage	0 to V_{L}	V
V_{O}	Output voltage	0 to V_{CC}	V
T_{op}	Operating temperature	-40 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input rise and fall time control input	$\mathrm{V}_{\mathrm{L}}=1.65$ to 2.7 V	0 to 20
	N	$\mathrm{~V} / \mathrm{V}$	

1. V_{L} pin should not be left floating.

4 Electrical characteristics

Table 6. DC specifications

Symbol	Parameter	$V_{c c}$ (V)	$\begin{aligned} & \mathrm{V}_{\mathrm{L}} \\ & (\mathrm{~V}) \end{aligned}$	Test condition	Value					Unit
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
					Min	Typ	Max	Min	Max	
V_{IH}	High level input voltage	1.65-4.3	1.65-1.95		1.25	-	-	1.25	-	V
			2.3-2.7		1.75	-	-	1.75	-	
			3.0-3.6		2.34	-	-	2.34	-	
			4.3		2.80	-	-	2.80	-	
$\mathrm{V}_{\text {IL }}$	Low level input voltage	1.65-4.3	1.65-1.95		-	-	0.6	-	0.6	V
			2.3-2.7		-	-	0.8	-	0.8	
			3.0-3.6		-	-	1.05	-	1.05	
			4.3		-	-	1.5	-	1.5	
R_{ON}	ON resistance	1.8	1.65-4.3	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $V_{C C}$$\mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA}$	-	1.5	2.5	-	3.7	Ω
		2.25			-	0.75	1.0	-	1.3	
		3			-	0.50	0.65	-	0.8	
		3.7			-	0.45	0.55	-	0.7	
		4.3			-	0.40	0.50	-	0.65	
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON resistance match between channels ${ }^{(1)}$	1.8	1.65-4.3	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $V_{C C}$$I_{S}=100 \mathrm{~mA}$	-	40	-	-	-	$\mathrm{m} \Omega$
		2.25			-	20	-	-	-	
		3			-	10	-	-	-	
		3.7			-	10	-	-	-	
		4.3			-	10	-	-	-	
$\mathrm{R}_{\text {FLAT }}$	ON resistance flatness ${ }^{(2)}$	1.8	1.65-4.3	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $V_{C C}$ $\mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA}$	-	1000	1700	-	2000	$\mathrm{m} \Omega$
		2.25			-	300	430	-	550	
		3			-	170	220	-	270	
		3.7			-	160	210	-	270	
		4.3			-	160	210	-	270	
IOFF	Sn OFF state leakage current	4.3	4.3	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0.3 \text { to } 4.0 \\ & \mathrm{~V}_{\mathrm{D}}=0.3 \text { to } 4.0 \end{aligned}$	-30	-	30	-300	300	nA
ION	Sn ON state leakage current	4.3	4.3	$\begin{aligned} & V_{S}=0.3 \text { to } 4.0 \\ & V_{D}=\text { open } \end{aligned}$	-30	-	30	-300	300	nA
I_{D}	D ON state leakage current	4.3	4.3	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\text { open } \\ & \mathrm{V}_{\mathrm{D}}=0.3 \text { to } 4.0 \end{aligned}$	-30	-	30	-300	300	nA

Table 6. DC specifications (continued)

Symbol	Parameter	V_{cc} (V)	$\begin{aligned} & \mathrm{V}_{\mathrm{L}} \\ & (\mathrm{~V}) \end{aligned}$	Test condition	Value					Unit
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
					Min	Typ	Max	Min	Max	
I_{CC}	Quiescent supply current	1.65-4.3	1.65-4.3	$\begin{aligned} & \mathrm{V}_{\text {SEL }}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND } \end{aligned}$	-0.05	-	0.05	-0.2	0.2	$\mu \mathrm{A}$
$I_{\text {SEL }}$	SEL leakage current	1.65-4.3	1.65-4.3	$\begin{aligned} & \mathrm{V}_{\mathrm{SEL}}=4.3 \mathrm{~V} \text { or } \\ & \text { GND } \end{aligned}$	-0.2	-	0.2	-2	2	$\mu \mathrm{A}$

1. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{Max})}-\mathrm{R}_{\mathrm{ON}(\mathrm{Min})}$
2. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

Table 7. $\quad A C$ electrical characteristics ($\left.C_{L}=35 p F, R_{L}=50 \Omega, t_{r}=t_{f} \leq 5 \mathrm{~ns}\right)$

Symbol	Parameter	V_{CC} (V)	V_{L} (V)	Test conditions	Value					Unit
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		
					Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation delay	1.65-1.95	$\begin{gathered} 1.65- \\ 4.3 \end{gathered}$		-	0.18	-	-	-	ns
		2.3-2.7			-	0.14	-	-	-	
		3.0-3.3			-	0.12	-	-	-	
		3.6-4.3			-	0.12	-	-	-	
${ }_{\text {ton }}$	TURN-ON time	$\begin{gathered} 1.65- \\ 1.95 \end{gathered}$	$\begin{gathered} 1.65- \\ 4.3 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$	-	70	123	-	160	ns
		$2.3-2.7$			-	48	62	-	80	
		3-3.6			-	33	43	-	56	
		4.3			-	29	38	-	49	
$t_{\text {OFF }}$	TURN-OFF time	$\begin{gathered} 1.65- \\ 1.95 \end{gathered}$	$\begin{gathered} 1.65- \\ 4.3 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$	-	36	45	-	60	ns
		2.3-2.7			-	35	47	-	62	
		3-3.6			-	30	40	-	51	
		4.3			-	29	38	-	50	
$t_{\text {D }}$	Break-beforemake time delay	$\begin{gathered} 1.65- \\ 1.95 \end{gathered}$	$\begin{gathered} 1.65- \\ 4.3 \end{gathered}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}} / 2 \end{aligned}$	10	42	-	-	-	ns
		2.3-2.7			10	22	-	-	-	
		3-3.6			5	15	-	-	-	
		4.3			5	12	-	-	-	

Table 7. AC electrical characteristics ($\left.C_{L}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathbf{t}_{\mathbf{f}} \leq 5 \mathrm{~ns}\right)$ (continued) (continued)

Symbol	Parameter	V_{cc} (V)	V_{L} (V)	Test conditions	Value					Unit
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		
					Min	Typ	Max	Min	Max	
Q	Charge injection	$\begin{gathered} 1.65- \\ 1.95 \end{gathered}$	1.65-4.3	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \end{aligned}$	-	83	-	-	-	pC
		2.3-2.7			-	98	-	-	-	
		3.0-3.3			-	114	-	-	-	
		3.6-4.3			-	140	-	-	-	
OIRR	Off isolation ${ }^{(1)}$	$\begin{gathered} 1.65- \\ 4.3 \end{gathered}$	4.3	$\begin{aligned} & V_{S}=1 V_{\mathrm{RMS}} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	-	77	-	-	-	dB
				$\begin{aligned} & V_{S}=1 V_{R M S} \\ & f=1 \mathrm{MHz} \end{aligned}$	-	67	-	-	-	
				$\begin{aligned} & V_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS}} \\ & \mathrm{f}=5 \mathrm{MHz} \end{aligned}$	-	50	-	-	-	
Xtalk	Crosstalk	$\begin{gathered} 1.65- \\ 4.3 \end{gathered}$	4.3	$\begin{aligned} & V_{S}=1 V_{\mathrm{RMS}} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	-	80	-	-	-	dB
				$\begin{aligned} & V_{S}=1 V_{R M S} \\ & f=1 M H z \end{aligned}$	-	67	-	-	-	
				$\begin{aligned} & V_{S}=1 V_{\mathrm{RMS}} \\ & \mathrm{f}=5 \mathrm{MHz} \end{aligned}$	-	50	-	-	-	
THD	Total harmonic distortion	2.3-4.3	4.3	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}} \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{f}=600 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$	-	0.01	-	-	-	\%
BW	-3dB bandwidth (switch ON)	$\begin{gathered} 1.65- \\ 4.3 \end{gathered}$	4.3	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	-	50	-	-	-	MHz

1. OFF-isolation $=20 \log _{10}(\mathrm{VD} / \mathrm{VS}), \mathrm{V}_{\mathrm{D}}=$ output, $\mathrm{V}_{\mathrm{S}}=$ input to off switch

Table 8. Capacitive characteristics

Symbol	Parameter	V_{cc} (V)	$\begin{aligned} & V_{L} \\ & (V) \end{aligned}$	Test condition	Value					Unit
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
					Min	Typ	Max	Min	Max	
$\mathrm{C}_{\text {SEL }}$	Control pin input capacitance	$1.8-4.3$	1.8-4.3	$\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{CC}}$	-	30	-	-	-	pf
$\mathrm{C}_{\text {SN }}$	Sn port capacitance	1.8-4.3	1.8-4.3	$\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{CC}}$	-	94	-	-	-	pf
$C_{\text {D }}$	D port capacitance when the switch is enabled	1.8-4.3	1.8-4.3	$\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{CC}}$	-	227	-	-	-	pf

5 Test circuits

Figure 4. ON resistance

Figure 5. Bandwidth

Figure 6. OFF leakage

CS14081

Figure 7. Channel-to-channel crosstalk

Figure 8. OFF isolation

Figure 9. Test circuit

1. $C_{L}=5 / 35 \mathrm{pF}$ or equivalent: (includes jig capacitance)
2. $R_{L}=50 \Omega$ or equivalent
3. $\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)

Figure 10. Break-before-make time delay

Figure 11. Switching time and charge injection
$\left(\mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right)$

Figure 12. Turn ON, turn OFF delay time

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

Figure 13. Package outline for Flip-chip $12(1.9 \times 1.4 \times 0.58 \mathrm{~mm})-0.50 \mathrm{~mm}$ pitch

Table 9. Mechanical data for Flip-chip $12(1.9 \times 1.4 \times 0.58 \mathrm{~mm})-0.50 \mathrm{~mm}$ pitch

Symbol	Millimeters		
	Min	Typ	Max
A	0.535	0.58	0.625
A1	0.18	0.205	0.23
A2	0.355	0.375	0.395
b	0.215	0.255	0.295
D	1.85	1.9	1.95
D1	-	1.5	-
e	0.45	0.5	0.55
E	1.35	1.4	1.45
E1	-	1	-
SD	-	0.25	-
f	0.19	0.2	0.21
ccc	-	0.08	-

Figure 14. Footprint recommendation

Figure 15. Tape information for Flip-chip 12 ($1.9 \times 1.4 \times 0.58 \mathrm{~mm}$) - $\mathbf{0 . 5 0} \mathbf{~ m m}$ pitch

Figure 16. Tape orientation for Flip-chip $12(1.9 \times 1.4 \times 0.58 \mathrm{~mm})-0.50 \mathrm{~mm}$ pitch

User direction of feed

Figure 17. Reel information for Flip-chip $12(1.9 \times 1.4 \times 0.58 \mathrm{~mm})-0.50 \mathrm{~mm}$ pitch

7 Revision history

Table 10. Document revision history

Date	Revision	Changes
19-Nov-2008	1	Initial release.
20-Apr-2009	2	Document status promoted from preliminary data to datasheet. Modified: Table 6: $D C$ specifications on page 6 and Section 6.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Switch ICs category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
PI5A100QEX DG9233EDY-GE3 NLAS4684FCTCG NLAS5223BLMNR2G NLV74HC4066ADR2G MC74HC4067ADTG
NLX2G66DMUTCG NS5A4684SMNTAG 732480R 733995E 425541DB 425528R 099044FB FSA221UMX MAX4888ETI+T NLAS5123MNR2G NLAS7222AMTR2G MAX14807ECB+ MAX4968ECM+ PI5A4157CEX NLV14066BDG LC78615E-01US-H

PI5A4599BCEX PI5A3157BZUEX NLAS4717EPFCT1G PI5A3167CCEX MAX4744ELB+T MAX4802ACXZ+ SLAS3158MNR2G PI5A392AQE MAX4744HELB+T PI5A4157ZUEX MC74HC4067ADTR2G PI5A4158ZAEX PI5A3166TAEX MAX4901EBL+T MAX14510EEVB+T PI3A3899ZTEX MAX4996ETG+T MAX4889AETO+T MAX14508EEVB+T MAX4701ETE+T MAX4996LETG+T NLX2G66FCTAG TMUX136RSER HV2605FG-G ISL43141IRZ DG302BDJ-E3 ADG741BKSZ-REEL ADG742BKSZ5-REEL7

