

STGF7NB60SL N-CHANNEL 7A - 600V - TO-220FP PowerMESH™ IGBT

Table 1: General Features

TYPE	V _{CES}	V _{CE(sat)} (Max) @25°C	lc @100°C
STGF7NB60SL	600 V	< 1.6 V	7 A

- POLYSILICON GATE VOLTAGE DRIVEN
- LOW THRESHOLD VOLTAGE
- LOW ON-VOLTAGE DROP
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY

DESCRIPTION

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH[™] IGBTs, with outstanding performances. The suffix "S" identifies a family optimized achieve minimum on-voltage drop for low frequency applications (<1kHz).

APPLICATIONS

- LIGHT DIMMER
- STATIC RELAYS

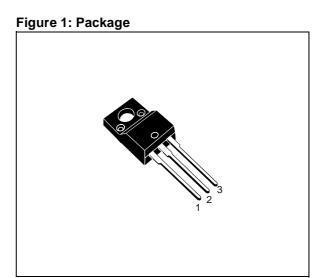
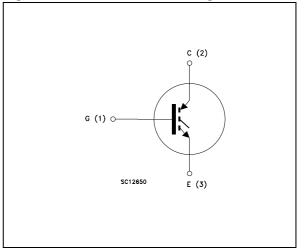



Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STGF7NB60SL	GF7NB60SL	TO-220FP	TUBE

STGF7NB60SL

Symbol	Parameter	Value	Symbol
V _{CES}	Collector-Emitter Voltage ($V_{GS} = 0$)	600	V
V _{ECR}	Reverse Battery Protection	20	V
V_{GE}	Gate-Emitter Voltage	± 20	V
Ι _C	Collector Current (continuous) at 25°C	15	A
Ι _C	Collector Current (continuous) at 100°C	7	A
I _{CM} (1)	Collector Current (pulsed)	20	A
Ртот	Total Dissipation at $T_C = 25^{\circ}C$	25	W
	Derating Factor	0.2	W/°C
V _{ISO}	Insulation Withstand Voltage A.C.	2500	V
T _{stg}	Storage Temperature	— 55 to 150	
Tj	Operating Junction Temperature		

Table 3: Absolute Maximum ratings

(1)Pulse width limited by max. junction temperature.

Table 4: Thermal Data

Rthj-case	Thermal Resistance Junction-case Max	5	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	°C/W

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED) **Table 5: Off**

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collectro-Emitter Breakdown Voltage	$I_{C} = 250 \ \mu A, V_{GE} = 0$	600			V
V _{BR(ECS)}	Emitter-Collector Breakdown Voltage	$I_{C} = 1$ mA, $V_{GE} = 0$	20			V
ICES	Collector-Emitter Leakage Current (V _{CE} = 0)	V _{GE} = Max Rating Tc=25°C Tc=125°C			10 100	μA μA
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	$V_{GE} = \pm 20 \text{ V}$, $V_{CE} = 0$			±100	nA

Table 6: On

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	V_{CE} = V_{GE} , I_C = 250 μ A	1.2		2.4	V
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	V _{GE} =4.5 V, I _C = 7A, Tj= 25°C V _{GE} =4.5 V, I _C = 7A, Tj= 125°C		1.2 1.1	1.6	V V

ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 7: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g fs	Forward Transconductance	$V_{CE} = 15 V, I_{C} = 7 A$		5		S
C _{ies} C _{oes} C _{res}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{CE} = 25V, f = 1 MHz, V _{GE} = 0		800 60 10		pF pF pF
Q _g Q _{ge} Q _{gc}	Total Gate Charge Gate-Emitter Charge Gate-Collector Charge	$V_{CE} = 480V, I_C = 7 A,$ $V_{GE} = 5V$ (see Figure 20)		16 2.5 8.5	22	nC nC nC
I _{CL}	Turn-Off SOA Minimum Current	$V_{clamp} = 480 \text{ V}$, Tj = 125°C R _G = 1 K Ω , V _{GE} =5V	20			A
tscw	Short Circuit Withstand Time	$\label{eq:Vce} \begin{array}{l} V_{\text{Ce}} = 0.5 \; V_{\text{BR}(\text{CES})}, \; V_{\text{GE}} {=} 5 V, \\ Tj = 125^\circ C \; , \; R_{G} = 1 K \Omega \end{array}$		14		μs

Table 8: Switching On

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Current Rise Time	$\label{eq:VCC} \begin{array}{l} V_{CC} = 480 \; V, I_C = 7 \; A \; R_G \!\!=\!\! 1 K \Omega \; , \\ V_{GE} = 5 \; V \\ \text{(see Figure 18)} \end{array}$		1.1 0.25		μs μs
(di/dt) _{on} E _{on}	Turn-on Current Slope Turn-on Switching Losses	V_{CC} = 480 V, I _C = 7 A R _G =1K Ω V _{GE} = 5 V,Tj = 125°C		45 2.7		A/µs mJ

Table 9: Switching Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _c	Cross-over Time	$V_{cc} = 480 \text{ V}, I_C = 7 \text{ A},$		2.7		μs
t _r (V _{off})	Off Voltage Rise Time	$R_{GE} = 1K\Omega$, $V_{GE} = 5 V$ (see Figure 18)		1.6		μs
t _d (_{off})	Delay Time	(000gu. 0 . 0)		5.2		μs
t _f	Current Fall Time			1.1		μs
E _{off} (**)	Turn-off Switching Loss			4.1		mJ
t _c	Cross-over Time	$V_{cc} = 480 \text{ V}, I_C = 7 \text{ A},$		4.4		μs
t _r (V _{off})	Off Voltage Rise Time	R _{GE} = 1KΩ , V _{GE} = 5 V Ti = 125 °C		2.4		μs
t _d (_{off})	Delay Time	(see Figure 18)		6.4		μs
t _f	Fall Time			1.7		μs
E _{off} (**)	Turn-off Switching Loss			7.1		mJ

(**)Turn-off losses include also the tail of the collector current.

Figure 3: Output Characteristics

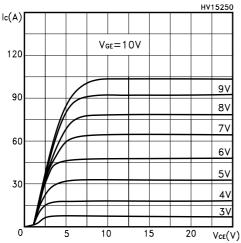


Figure 4: Transconductance

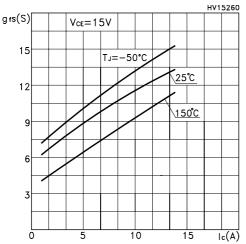


Figure 5: Collector-Emitter On Voltage vs Collector Current

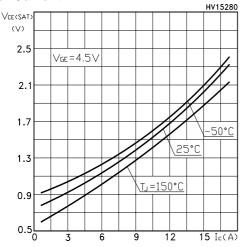


Figure 6: Transfer Characteristics

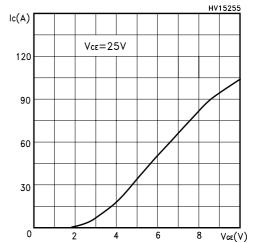
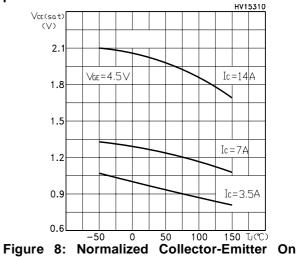
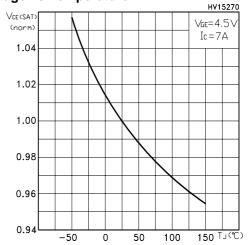




Figure 7: Collector-Emitter On Voltage vs Temperature

Voltage vs Temperature

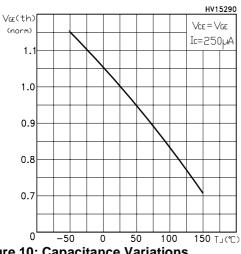


Figure 9: Gate Thereshold vs Temperature

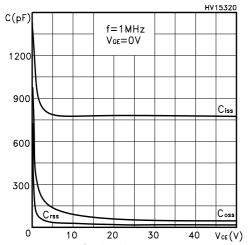


Figure 11: Total Switching Losses vs Gate Resistance

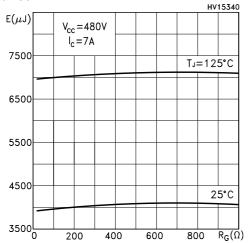


Figure 12: Normalized Breakdown Voltage vs Temperature

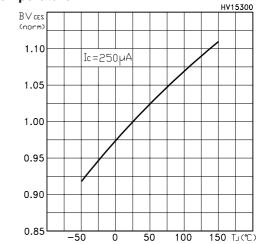


Figure 13: Gate Charge vs Gate-Emitter Voltage

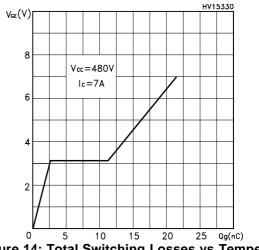


Figure 14: Total Switching Losses vs Temperature

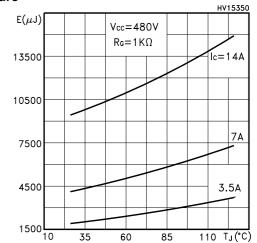


Figure 15: Total Switching Losses vs Collector Current

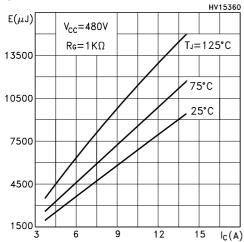
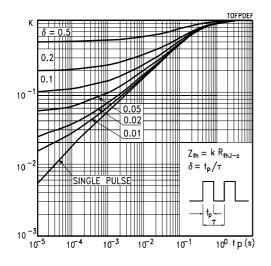
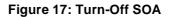
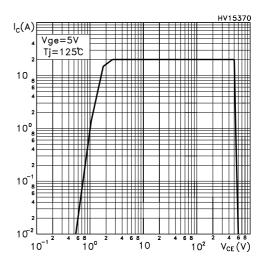





Figure 16: Thermal Impedance

57.

Figure 18: Test Circuit for Inductive Load Switching

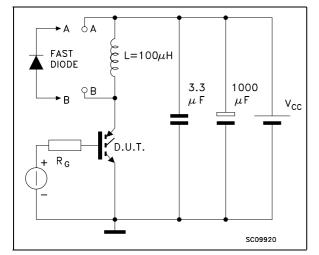
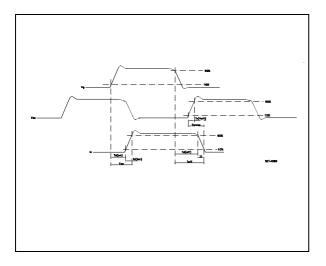
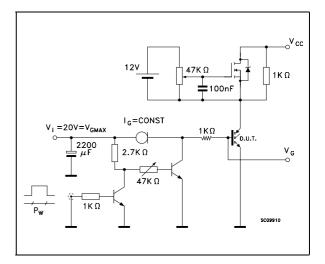




Figure 19: Switching Waveforms

Figure 20: Gate Charge Test Circuit

STGF7NB60SL

Table 10: Revision History

Date	Revision	Description of Changes
04-June-2004	2	Stylesheet update. No content change
02-Sep-2004	3	Datasheet updated, see table1

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2 IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 HGTG40N60B3 FGH60N60SMD_F085 FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1 IDW40E65D2FKSA1