

NSDIP-26L

Product status
STGIPNS3HD60-H

Device summary	
Order code	STGIPNS3HD60-H
Marking	GIPNS3HD60-H
Package	NSDIP-26L
Packing	Tape and reel

SLLIMM-nano IPM, 3 A, 600 V, 3-phase inverter IGBT

Features

- IPM 3 A, 600 V , 3-phase inverter IGBT including control ICs for gate driving and freewheeling diodes
- Optimized for low electromagnetic interference
- $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ negative temperature coefficient
- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}$ CMOS/TTL inputs comparators with hysteresis and pull-down/ pull-up resistors
- Blanking time $\mathrm{t}_{\text {dead }} \geq 1 \mu \mathrm{~s}$
- Undervoltage lockout
- Internal bootstrap diode
- Interlocking function
- Shutdown function
- Comparator for fault protection against overcurrent
- Op-amp for advanced current sensing
- Optimized pinout for easy board layout
- Moisture sensitivity level (MSL) 3 for SMD package

Applications

- 3-phase inverters for motor drives
- Roller shutters, dish washers, refrigerator compressors, airconditioning fans, draining and recirculation pumps

Description

This SLLIMM (small low-loss intelligent molded module) nano provides a compact, high-performance AC motor drive in a simple, rugged design. It is composed of six IGBTs and three half-bridge HVICs for gate driving, providing low electromagnetic interference (EMI) characteristics with optimized switching speed. The package is optimized for thermal performance and compactness in built-in motor applications, or other low power applications where assembly space is limited. This IPM includes an operational amplifier, completely uncommitted, and a comparator that can be used to design a fast and efficient protection circuit. SLLIMM is a trademark of STMicroelectronics.

Figure 1. Internal schematic diagram

Table 1. Pin description

Pin	Symbol	Description
1	GND	Ground
2	$\overline{S D} / \mathrm{OD}$	Shutdown logic input (active low) / open-drain (comparator output)
3	$\mathrm{V}_{\text {cc }} \mathrm{W}$	Low voltage power supply W phase
4	HIN W	High-side logic input for W phase
5	LIN W	Low-side logic input for W phase
6	OP+	Op-amp non inverting input
7	OPOUT	Op-amp output
8	OP-	Op-amp inverting input
9	$\mathrm{V}_{\text {cc }} \mathrm{V}$	Low voltage power supply V phase
10	HIN V	High-side logic input for V phase
11	LIN V	Low-side logic input for V phase
12	CIN	Comparator input
13	$\mathrm{V}_{\mathrm{CC}} \mathrm{U}$	Low voltage power supply for U phase
14	HIN U	High-side logic input for U phase
15	$\overline{S D} / O D$	Shutdown logic input (active low) / open-drain (comparator output)
16	LIN U	Low-side logic input for U phase
17	$V_{\text {BOOT }} \mathrm{U}$	Bootstrap voltage for U phase
18	P	Positive DC input
19	$\mathrm{U}, \mathrm{OUT}_{u}$	U phase output
20	N_{U}	Negative DC input for U phase
21	$\mathrm{V}_{\text {BOOT }} \mathrm{V}$	Bootstrap voltage for V phase
22	V , OUTV	V phase output
23	N_{V}	Negative DC input for V phase
24	$\mathrm{V}_{\text {BOot }} \mathrm{W}$	Bootstrap voltage for W phase
25	W, OUTW	W phase output
26	N_{W}	Negative DC input for W phase

Figure 2. Pin layout (top view)

(*) Dummy pin internally connected to P (positive DC input).

2 Electrical ratings

2.1 Absolute maximum ratings

Table 2. Inverter part

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CES }}$	Collector-emitter voltage for each IGBT $\left(\mathrm{V}_{\left.\text {IN }^{(1)}=0 \mathrm{~V}\right)}\right.$	600	V
$\pm \mathrm{I}_{\mathrm{C}}$	Continuous collector current each IGBT $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	3	A
$\pm \mathrm{ICP}^{(2)}$	Pulsed collector current each IGBT (less than 1 ms$)$	6	A
$\mathrm{P}_{\text {TOT }}$	Total power dissipation each IGBT $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	9	W

1. Applied among $\operatorname{HIN}_{i}, L I N_{i}$ and $G N D$ for $i=U, V, W$
2. Pulse width limited by maximum junction temperature.

Table 3. Control part

Symbol	Parameter	Min.	Max.	Unit
Vout	Output voltage applied among OUT $_{\text {U }}$, OUT $_{\text {, }}$, OUT $_{\text {W }}$ - GND	$V_{\text {boot }}-21$	$\mathrm{V}_{\text {boot }}+0.3$	V
V_{Cc}	Low voltage power supply	-0.3	21	V
$\mathrm{V}_{\mathrm{CIN}}$	Comparator input voltage	-0.3	$\mathrm{V}_{\text {CC }}+0.3$	V
$\mathrm{V}_{\text {op }+}$	Op-amp non-inverting input	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$V_{\text {op- }}$	Op-amp inverting input	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	v
$V_{\text {boot }}$	Bootstrap voltage	-0.3	620	V
$\mathrm{V}_{\text {IN }}$	Logic input voltage applied among HIN, LIN and GND	-0.3	15	V
$\mathrm{V}_{\mathrm{T} / \mathrm{SD} / \mathrm{OD}}$	Open-drain voltage	-0.3	15	V
$\mathrm{dv} \mathrm{out}^{\text {/ } / d t}$	Allowed output slew rate		50	V/ns

Table 4. Total system

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {ISO }}$	Isolation withstand voltage applied between each pin and heatsink plate (AC voltage, $\mathrm{t}=60 \mathrm{~s})$	1000	Vrms
T_{J}	Power chips operating junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
T_{C}	Module case operation temperature	-40 to 125	${ }^{\circ} \mathrm{C}$

2.2 Thermal data

Table 5. Thermal data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\mathrm{th}(-\mathrm{c})}$	Thermal resistance junction-case single IGBT	13.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Thermal resistance junction-case single diode	17.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th}(-\mathrm{a})}$	Thermal resistance junction-ambient (per module)	24	${ }^{\circ} \mathrm{C} / \mathrm{W}$

3 Electrical characteristics

3.1 Inverter part

$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ unless otherwise specified

Table 6. Static

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	Collector-emitter saturation voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {boot }}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}{ }^{(1)}=0 \text { to } 5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} \end{aligned}$	-	2.15	2.6	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {boot }}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}{ }^{(1)}=0 \text { to } 5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$	-	1.65		
Ices	Collector-cut off current $\left(\mathrm{V}_{\mathrm{IN}}={ }^{(1)} 0 \text { "logic state" }\right)$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=550 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{Boot}}=15 \mathrm{~V} \end{aligned}$	-		250	$\mu \mathrm{A}$
V_{F}	Diode forward voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}{ }^{(1)}=0 \text { "logic state", } \\ & \mathrm{IC}_{\mathrm{C}}=1 \mathrm{~A} \end{aligned}$	-		1.7	V

1. Applied among $\operatorname{HIN}_{x}, \operatorname{LIN}_{x}$ and $G_{N D}$ for $x=U, V, W$.

Table 7. Inductive load switching time and energy

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {on }}{ }^{(1)}$	Turn-on time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=300 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{boot}}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}^{(2)}=0 \text { to } 5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} \end{aligned}$ (see Figure 4. Switching time definition)	-	158	-	ns
$\mathrm{t}_{\mathrm{c} \text { (on) }}{ }^{(1)}$	Crossover time (on)		-	60	-	
$\mathrm{t}_{\text {off }}{ }^{(1)}$	Turn-off time		-	515	-	
$\mathrm{t}_{\text {(} \text { (off) }}{ }^{(1)}$	Crossover time (off)		-	85	-	
t_{rr}	Reverse recovery time		-	82	-	
$E_{\text {on }}$	Turn-on switching energy		-	16	-	$\mu \mathrm{J}$
$\mathrm{E}_{\text {off }}$	Turn-off switching energy		-	10	-	

1. $t_{o n}$ and $t_{\text {off }}$ include the propagation delay time of the internal drive. $t_{c(o n)}$ and $t_{c(\text { off })}$ are the switching time of IGBT itself under the internally given gate driving condition.
2. Applied among $H I N_{x}, L I N_{x}$ and $G_{N D}$ for $x=U, V, W$.

Figure 3. Switching time test circuit

Figure 4. Switching time definition

(a) turn-on

(b) turn-off

Figure 4. Switching time definition refers to HIN, LIN inputs (active high).

3.2 Control part

$V_{C C}=15 \mathrm{~V}$ unless otherwise specified

Table 8. Low voltage power supply

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {CC_hys }}$	$V_{\text {CC }}$ UV hysteresis		1.2	1.5	1.8	V
$\mathrm{V}_{\text {CC_thon }}$	$\mathrm{V}_{\text {CC }}$ UV turn-ON threshold		11.5	12	12.5	V
VCC_thOFF	$\mathrm{V}_{\text {CC }}$ UV turn-OFF threshold		10	10.5	11	V
$\mathrm{I}_{\mathrm{qccu}}$	Undervoltage quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \overline{\mathrm{SD}} / \mathrm{OD}=5 \mathrm{~V} \\ & \mathrm{LIN}=0 \mathrm{~V}, \mathrm{HIN}=0 \mathrm{~V} \\ & \mathrm{CIN}=0 \mathrm{~V} \end{aligned}$			150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {qcc }}$	Quiescent current	$\begin{aligned} & \mathrm{V} \mathrm{cC}=15 \mathrm{~V}, \overline{\mathrm{SD}} / \mathrm{OD}=5 \mathrm{~V}, \\ & \mathrm{LIN}=0 \mathrm{~V}, \mathrm{HIN}=0 \mathrm{~V} \\ & \mathrm{CIN}=0 \mathrm{~V} \end{aligned}$			1	mA
$\mathrm{V}_{\text {ref }}$	Internal comparator (CIN) reference voltage		0.51	0.54	0.56	V

Table 9. Bootstrapped voltage

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {BS_hys }}$	$\mathrm{V}_{\text {BS }}$ UV hysteresis		1.2	1.5	1.8	V
$\mathrm{V}_{\text {BS_thON }}$	$\mathrm{V}_{\text {BS }}$ UV turn-ON threshold		11.1	11.5	12.1	V
$\mathrm{V}_{\text {BS_thOFF }}$	$\mathrm{V}_{\text {BS }}$ UV turn-OFF threshold		9.8	10	10.6	V
$\mathrm{I}_{\text {QBSU }}$	Undervoltage V_{BS} quiescent current	$\begin{aligned} & \mathrm{V}_{\mathrm{BS}}<9 \mathrm{~V}, \overline{\mathrm{SD}} / \mathrm{OD}=5 \mathrm{~V}, \\ & \mathrm{LIN}=0 \mathrm{~V} \text { and } \mathrm{HIN}=5 \mathrm{~V}, \\ & \mathrm{CIN}=0 \mathrm{~V} \end{aligned}$		70	110	$\mu \mathrm{A}$
$I_{\text {QBS }}$	$V_{\text {BS }}$ quiescent current	$\begin{aligned} & \mathrm{V} \mathrm{BS}=15 \mathrm{~V}, \overline{\mathrm{SD}} / \mathrm{OD}=5 \mathrm{~V}, \\ & \mathrm{LIN}=0 \mathrm{~V} \text { and } \mathrm{HIN}=5 \mathrm{~V}, \\ & \mathrm{CIN}=0 \mathrm{~V} \end{aligned}$		150	210	$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Bootstrap driver on-resistance	LVG ON		120		Ω

Table 10. Logic inputs

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {il }}$	Low logic level voltage				0.8	V
$\mathrm{V}_{\text {ih }}$	High logic level voltage		2.25			V
$\mathrm{I}_{\mathrm{HINh}}$	HIN logic "1" input bias current	$\mathrm{HIN}=15 \mathrm{~V}$	20	40	100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{HINI}}$	HIN logic "0" input bias current	$\mathrm{HIN}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
l LINI	LIN logic "0" input bias current	$\mathrm{LIN}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
linh	LIN logic "1" input bias current	$\mathrm{LIN}=15 \mathrm{~V}$	20	40	100	$\mu \mathrm{A}$
$I_{\text {SDh }}$	$\overline{\mathrm{SD}}$ logic "0" input bias current	$\overline{\mathrm{SD}}=15 \mathrm{~V}$	30	120	300	$\mu \mathrm{A}$
$I_{\text {SDI }}$	$\overline{\mathrm{SD}}$ logic "1" input bias current	$\overline{\mathrm{SD}}=0 \mathrm{~V}$			3	$\mu \mathrm{A}$
Dt	Dead time	see Figure 5. Dead time and interlocking waveform definitions		360		ns

Table 11. Op-amp characteristics

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
$V_{\text {io }}$	Input offset voltage	$\mathrm{V}_{\text {ic }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=7.5 \mathrm{~V}$			6	mV
$\mathrm{I}_{\text {io }}$	Input offset current	$\mathrm{V}_{\text {ic }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V}$		4	40	nA
$\mathrm{l}_{\text {ib }}$	Input bias current ${ }^{(1)}$			100	200	nA
V_{OL}	Low level output voltage	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to V_{CC}		75	150	mV
V_{OH}	High level output voltage	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to GND	14	14.7		V
I_{0}	Output short-circuit current	Source, $\mathrm{V}_{\mathrm{id}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=0 \mathrm{~V}$	16	30		mA
		Sink, $\mathrm{V}_{\text {id }}=-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$	50	80		mA
SR	Slew rate	$\mathrm{V}_{\mathrm{i}}=1-4 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, unity gain	2.5	3.8		V/ $/ \mathrm{s}$
GBWP	Gain bandwidth product	$\mathrm{V}_{0}=7.5 \mathrm{~V}$	8	12		MHz
A_{vd}	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	70	85		dB
SVR	Supply voltage rejection ratio	vs. $V_{C C}$	60	75		dB
CMRR	Common mode rejection ratio		55	70		dB

1. The direction of input current is out of the IC.

Table 12. Sense comparator characteristics

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{I}_{\text {ib }}$	Input bias current	$\mathrm{V}_{\mathrm{CIN}}=1 \mathrm{~V}$			3	$\mu \mathrm{A}$
$\mathrm{V}_{\text {ol }}$	Open-drain low level output voltage	$\mathrm{I}_{\text {od }}=3 \mathrm{~mA}$			0.5	V
RON_OD	Open-drain low level output	$\mathrm{I}_{\text {od }}=3 \mathrm{~mA}$		166		Ω
RPD_SD	$\overline{\mathrm{SD}}$ pull-down resistor ${ }^{(1)}$			125		$k \Omega$
$t_{\text {d_comp }}$	Comparator delay	$\overline{\mathrm{SD}} / \mathrm{OD}$ pulled to 5 V through $100 \mathrm{k} \Omega$ resistor		90	130	ns
SR	Slew rate	$\mathrm{C}_{\mathrm{L}}=180 \mathrm{pF} ; \mathrm{R}_{\mathrm{pu}}=5 \mathrm{k} \Omega$		60		$\mathrm{V} / \mu \mathrm{s}$
$t_{\text {sd }}$	Shutdown to high / low-side driver propagation delay	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{boot}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\text {IN }}=0 \text { to } 3.3 \mathrm{~V} \end{aligned}$	50	125	200	ns
$t_{\text {isd }}$	Comparator triggering to high / low-side driver turn-off propagation delay	Measured applying a voltage step from 0 V to 3.3 V to pin CIN	50	200	250	

1. Equivalent values as a result of the resistances of three drivers in parallel.

Table 13. Truth table

Condition	Logic input (V_{l})			Output	
	SD/OD	LIN	HIN	LVG	HVG
Shutdown enable half-bridge tri-state	L	X ${ }^{(1)}$	$\mathrm{X}^{(1)}$	L	L
Interlocking half-bridge tri-state	H	H	H	L	L
0 "logic state" half-bridge tri-state	H	L	L	L	L
1 "logic state" low side direct driving	H	H	L	H	L
1 "logic state" high side direct driving	H	L	H	L	H

1. X: don't care.

3.3 Waveform definitions

Figure 5. Dead time and interlocking waveform definitions

4 Shutdown function

The device is equipped with three half-bridge IC gate drivers and integrates a comparator for fault detection. The comparator has an internal voltage reference $\mathrm{V}_{\text {REF }}$ connected to the inverting input, while the non-inverting input pin (CIN) can be connected to an external shunt resistor for current monitoring.
Since the comparator is embedded in the U IC gate driver, in case of fault it disables directly the U outputs, whereas the shutdown of V and W IC gate drivers depends on the RC value of the external SD circuitry, which fixes the disabling time.
For an effective design of the shutdown circuit, please refer to Application note AN4966.

Figure 6. Shutdown timing waveforms

[^0]

SHUTDOWN CIRCUIT

$$
t_{A} \cong \tau_{A} \cdot \ln \left(\frac{V_{o f f}-V_{o n}}{V_{i l}-V_{o n}}\right), \quad t_{B} \cong \tau_{B} \cdot \ln \left(\frac{V_{i l}-V_{\text {off }}}{V_{\text {ih }}-V_{o f f}}\right)
$$

$$
\tau_{A}=\left(R_{O N_{-} O D} / / R_{S D} / / R_{P D_{-} S D} / /^{*} R_{N T C}\right) \cdot C_{S D} \cong R_{O N_{-} O D} \cdot C_{S D}
$$

$$
\tau_{B}=\left(R_{S D} / / R_{P D_{-} S D} / /^{*} R_{N T C}\right) \cdot C_{S D}
$$

$$
V_{o n}=\frac{R_{O N_{-} O D} / / R_{P D_{-} S D} / /^{*} R_{N T C}}{\left(R_{O N_{-} O D} / / R_{P D_{-} S D} / /_{D}^{*} R_{N T C}\right)+R_{S D}} \cdot V_{\text {bias }}
$$

$$
\xlongequal{\cong} \frac{R_{O D_{\text {IOD }}}}{R_{O N_{-} O D}+R_{S D}} \cdot V_{\text {bias }}
$$

$$
V_{o f f}=\frac{R_{P D_{-} S D} / /^{*} R_{N T C}}{\left(R_{P D_{-} S D} / /^{*} R_{N T C}\right)+R_{S D}} \cdot V_{\text {bias }}
$$

RsD and CsD external circuitry must be designed to ensure $V_{o n}<V_{i l} \& V_{o f f}>V_{i h}$
Please refer to AN4966 for further details.

[^1]Figure 7. Application circuit example

Application designers are free to use a different scheme according to the device specifications.

5.1 Guidelines

- Input signals HIN, LIN are active high logic. A $375 \mathrm{k} \Omega$ (typ.) pull-down resistor is built-in for each input. To avoid input signal oscillation, the wiring of each input should be as short as possible, and the use of RC filters $\left(R_{1}, C_{1}\right)$ on each input signal is suggested. The filters should be with a time constant of about 100 ns and placed as close as possible to the IPM input pins.
- The use of a bypass capacitor $\mathrm{C}_{\mathrm{VCC}}$ (aluminum or tantalum) can reduce the transient circuit demand on the power supply. Also, to reduce any high-frequency switching noise distributed on the power lines, a decoupling capacitor C_{2} (100 to 220 nF , with low ESR and low ESL) should be placed as close as possible to the V_{cc} pin and in parallel with the bypass capacitor.
- The use of an RC filter ($\mathrm{R}_{\mathrm{SF}}, \mathrm{C}_{\mathrm{SF}}$) is recommended to prevent protection circuit malfunction. The time constant ($R_{S F} \times C_{S F}$) should be set to $1 \mu \mathrm{~s}$ and the filter must be placed as close as possible to the C_{IN} pin.
- The $\overline{\mathrm{SD}}$ is an input/output pin (open-drain type if it is used as output). A built-in thermistor NTC is internally connected between the $\overline{S D}$ pin and GND. The voltage $\mathrm{V}_{\mathrm{SD}}-\mathrm{GND}$ decreases as the temperature increases, due to the pull-up resistor $\mathrm{R}_{\text {SD }}$. In order to keep the voltage always higher than the high-level logic threshold, the pull-up resistor should be set to $1 \mathrm{k} \Omega$ or $2.2 \mathrm{k} \Omega$ for 3.3 V or 5 V MCU power supply, respectively. The capacitor $\mathrm{C}_{\text {SD }}$ of the filter on $\overline{\mathrm{SD}}$ should be fixed no higher than 3.3 nF in order to assure the $\overline{\mathrm{SD}}$ activation time $T_{A} \leq 500$ ns. Besides, the filter should be placed as close as possible to the $\overline{S D}$ pin.
- The decoupling capacitor C_{3} (from 100 to 220 nF , ceramic with low ESR and low ESL), in parallel with each $\mathrm{C}_{\text {boot }}$, filters high-frequency disturbance. Both $\mathrm{C}_{\text {boot }}$ and C_{3} (if present) should be placed as close as possible to the $\mathrm{U}, \mathrm{V}, \mathrm{W}$ and $\mathrm{V}_{\text {boot }}$ pins. Bootstrap negative electrodes should be connected to $\mathrm{U}, \mathrm{V}, \mathrm{W}$ terminals directly and separated from the main output wires.
- To avoid overvoltage on the V_{cc} pin, a Zener diode (Dz1) can be used. Similarly on the $\mathrm{V}_{\text {boot }}$ pin, a Zener diode (Dz2) can be placed in parallel with each $\mathrm{C}_{\text {boot }}$.
- The use of the decoupling capacitor C_{4} (100 to 220 nF , with low ESR and low ESL) in parallel with the electrolytic capacitor $\mathrm{C}_{\mathrm{vdc}}$ is useful to prevent surge destruction. Both capacitors C_{4} and $\mathrm{C}_{\mathrm{vdc}}$ should be placed as close as possible to the IPM (C_{4} has priority over $\mathrm{C}_{\mathrm{vdc}}$).
- By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals without an opto-couplers is possible.
- Low-inductance shunt resistors have to be used for phase leg current sensing.
- In order to avoid malfunctions, the wiring on N pins, the shunt resistor and PWR_GND should be as short as possible.
- The connection of SGN_GND to PWR_GND on one point only (close to the shunt resistor terminal) can reduce the impact of power ground fluctuation.
These guidelines ensure the device specifications for application designs. For further details, please refer to the relevant application note.

Table 14. Recommended operating conditions

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{P N}$	Supply voltage	Applied among P-Nu, Nv, Nw		300	500	V
V_{Cc}	Control supply voltage	Applied to $\mathrm{V}_{\mathrm{cc}}-\mathrm{GND}$	13.5	15	18	V
$V_{B S}$	High-side bias voltage	Applied to $\mathrm{V}_{\text {BOOTx }}$-OUT for $\mathrm{x}=\mathrm{U}, \mathrm{V}, \mathrm{W}$	13		18	V
$\mathrm{t}_{\text {dead }}$	Blanking time to prevent arm-short	For each input signal	1			$\mu \mathrm{s}$
$\mathrm{f}_{\text {PWM }}$	PWM input signal	$\begin{aligned} & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{C}}<100^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C} \end{aligned}$			25	kHz
T_{C}	Case operation temperature				100	${ }^{\circ} \mathrm{C}$

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

6.1 NSDIP-26L package information

Figure 8. NSDIP-26L package outline

Table 15. NSDIP-26L package mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A			3.45
A1	0.10		0.25
A2	3.00	3.10	3.20
A3	1.10	1.30	1.50
b	0.47		0.57
b1	0.45	0.50	0.55
b2	0.63		0.67
c	0.47		0.57
c1	0.45	0.50	0.55
D	29.05	29.15	29.25
D1	0.70		
D2	0.45		
D3	0.90		
D4			29.65
E	12.35	12.45	12.55
E1	16.70	17.00	17.30
E2	0.35		
e	1.70	1.80	1.90
e1	2.40	2.50	2.60
L	1.24	1.39	1.54
L1	1.00	1.15	1.30
L2		. 25 BS	
L3		275 RE	
R1	0.25	0.40	0.55
R2	0.25	0.40	0.55
S		0.39	0.55
θ	0°		8°
ө1		$3^{\circ} \mathrm{BSC}$	
ө2	10°	12°	14°

Figure 9. NSDIP-26L recommended footprint (dimensions are in mm)

8374968_4_fp

Revision history

Table 16. Document revision history

Date	Revision	Changes
19-Apr-2017	1	Initial release
19-Jan-2018	2	Datasheet status promoted from preliminary to production data. Updated features on cover page. Updated Table 3: "Inverter part", Table 5: "Total system", Table 6: "Thermal data", Table 9: "Low-voltage power supply", Table 10: "Bootstrapped voltage" and Table 13: "Sense comparator characteristics". Updated Figure 6: "Smart shutdown timing waveforms". Updated Section 6.1: "NSDIP-26L package information". Minor text changes
21-Oct-2019	3	Modified features and applications on cover page. Modified Table 2. Inverter part, Table 5. Thermal data, Table 8. Low voltage power supply, Table 10. Logic inputs and Section 5.1 Guidelines Updated Section 6.1 NSDIP-26L package information. Minor text changes.

Contents

1 Internal schematic diagram and pin configuration 2
2 Electrical ratings 5
2.1 Absolute maximum ratings 5
2.2 Thermal data 6
3 Electrical characteristics 7
3.1 Inverter part 7
3.2 Control part 9
3.3 Waveform definitions 11
4 Shutdown function 13
5 Application circuit example 14
5.1 Guidelines 15
6 Package information 16
6.1 NSDIP-26L package information 16
Revision history 19

MPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Modules category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
F3L400R07ME4_B22 F4-50R07W2H3_B51 FB15R06W1E3 FB20R06W1E3_B11 FD1000R33HE3-K FD400R12KE3 FD400R33KF2C-K
FD401R17KF6C_B2 FD-DF80R12W1H3_B52 FF200R06YE3 FF300R12KE4_E FF450R12ME4P FF600R12IP4V FP15R12W2T4
FP20R06W1E3 FP50R12KT3 FP75R07N2E4_B11 FS10R12YE3 FS150R07PE4 FS150R12PT4 FS200R12KT4R FS20R06W1E3_B11
FS50R07N2E4_B11 FZ1000R33HE3 FZ1800R17KF4 DD250S65K3 DF1000R17IE4 DF1000R17IE4D_B2 DF1400R12IP4D
DF200R12PT4_B6 DF400R07PE4R_B6 BSM75GB120DN2_E3223c-Se F3L300R12ME4_B22 F3L75R07W2E3_B11 F4-50R12KS4_B11
F475R07W1H3B11ABOMA1 FD1400R12IP4D FD200R12PT4_B6 FD800R33KF2C-K FF150R12ME3G FF300R17KE3_S4
FF300R17ME4_B11 FF401R17KF6C_B2 FF650R17IE4D_B2 FF900R12IP4D FF900R12IP4DV FP50R07N2E4_B11 FS100R07PE4
FS150R07N3E4_B11 FS150R17N3E4

[^0]: GADG250120171515FSR

[^1]: * $R_{\text {NTc }}$ to be considered only when the NTC is internally connected to the T/ $\overline{\mathrm{SD}} / \mathrm{OD}$ pin.

