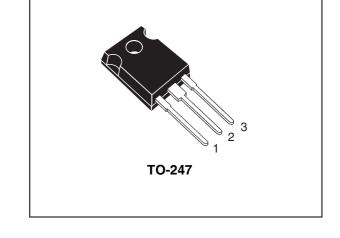


STGW35HF60WD


35 A, 600 V ultra fast IGBT

Features

- Improved E_{off} at elevated temperature
- Minimal tail current
- Low conduction losses
- V_{CE(sat)} classified for easy parallel connection
- Ultra fast soft recovery antiparallel diode

Applications

- Welding
- High frequency converters
- Power factor correction

Description

The STGW35HF60WD is based on a new advanced planar technology concept to yield an IGBT with more stable switching performance (E_{off}) versus temperature, as well as lower conduction losses. The device is tailored to high switching frequency operation (over 100 kHz).

Figure 1. Internal schematic diagram

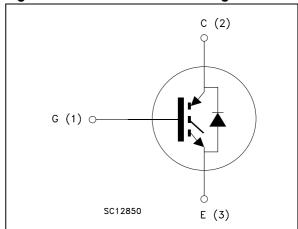


Table 1. Device summary

Order code	Marking ⁽¹⁾	Package	Packaging
	GW35HF60WDA		
STGW35HF60WD	GW35HF60WDB	TO-247	Tube
	GW35HF60WDC		

Collector-emitter saturation voltage is classified in group A, B and C, see Table 5: VCE(sat) classification. STMicroelectronics reserves the right to ship from any group according to production availability.

Electrical ratings STGW35HF60WD

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	600	V
I _C ⁽¹⁾	Continuous collector current at T _C = 25 °C	60	Α
I _C ⁽¹⁾	Continuous collector current at T _C = 100 °C	35	Α
I _{CP} ⁽²⁾	Pulsed collector current	150	Α
I _{CL} (3)	Turn-off latching current	80	Α
V_{GE}	Gate-emitter voltage	± 20	٧
I _F	Diode RMS forward current at T _C = 25 °C	30	Α
I _{FSM}	Surge non repetitive forward current t _p = 10 ms sinusoidal	120	Α
P _{TOT}	Total dissipation at T _C = 25 °C	200	W
T _{stg}	Storage temperature	- 55 to 150	
Tj	Operating junction temperature	- 55 10 150	°C

^{1.} Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

- 2. Pulse width limited by maximum junction temperature and turn-off within RBSOA
- 3. V_{CLAMP} = 80% (V_{CES}), V_{GE} = 15 V, R_{G} = 10 Ω , T_{J} = 150 °C

Table 3. Thermal data

Symbol	Parameter	Value	Unit
В	Thermal resistance junction-case IGBT	0.63	°C/W
R _{thj-case}	Thermal resistance junction-case diode	1.5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	50	°C/W

2 Electrical characteristics

 $(T_J = 25 \, ^{\circ}C \text{ unless otherwise specified})$

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1 mA	600			V
V	Collector-emitter	V _{GE} = 15 V, I _C = 20 A			2.5	V
V _{CE(sat)}	saturation voltage	$V_{GE} = 15V$, $I_{C} = 20$ A, $T_{J} = 125$ °C		1.65		V
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 1 \text{ mA}$	3.75		5.75	٧
I _{CES}	Collector cut-off current	V _{CE} = 600 V			250	μΑ
CES	$(V_{GE} = 0)$	V _{CE} = 600 V, T _J = 125 °C			1	mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ±20 V			± 100	nA

Table 5. V_{CE(sat)} classification

Symbol	Parameter	Group	Value		Unit
Cymbol	i arameter	Стопр	Min.	Max.	Ome
		Α	1.68	1.92	
V _{CE(sat)}	$V_{CE(sat)}$ Collector-emitter saturation voltage $V_{GE} = 15 \text{ V}, I_{C} = 20 \text{ A}$	В	1.88	2.17	V
	- GE = .3 ·, .C= 23 / .	С	2.13	2.50	

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{CE} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GE} = 0$	-	2400 235 50	-	pF pF pF
$egin{array}{c} Q_{ m g} \ Q_{ m gc} \end{array}$	Total gate charge Gate-emitter charge Gate-collector charge	$V_{CE} = 400 \text{ V}, I_{C} = 20 \text{ A},$ $V_{GE} = 15 \text{ V},$ (see Figure 17)	-	140 13 52	-	nC nC nC

Electrical characteristics STGW35HF60WD

Table 7. Switching on/off (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 400 \text{ V}, I_C = 20 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ (see Figure 16)	-	30 15 1650	-	ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 400 \text{ V}, I_{C} = 20 \text{ A}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_{J} = 125 \text{ °C} \text{ (see Figure 16)}$	-	30 15 1600	-	ns ns A/µs
$t_r(V_{off})$ $t_d(_{off})$ t_f	Off voltage rise time Turn-off delay time Current fall time	V_{CC} = 400 V, I_{C} = 20 A, R_{GE} = 10 Ω , V_{GE} = 15 V (see Figure 16)	-	30 175 40	-	ns ns ns
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 400 \text{ V}, I_{C} = 20 \text{ A},$ $R_{GE} = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_{J} = 125 \text{ °C}$ (see Figure 16)	-	50 225 70	-	ns ns ns

Table 8. Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} ⁽¹⁾	Turn-on switching losses	$V_{CC} = 400 \text{ V}, I_{C} = 20 \text{ A}$		290		μJ
E _{off}	Turn-off switching losses	$R_G = 10 \Omega$, $V_{GE} = 15 V$,	-	185		μJ
E_{ts}	Total switching losses	(see Figure 18)		475		μJ
E _{on} ⁽¹⁾	Turn-on switching losses	V _{CC} = 400 V, I _C = 20 A		420		μJ
E_{off}	Turn-off switching losses	$R_G = 10 \Omega$, $V_{GE} = 15 V$,	-	350	530	μJ
E _{ts}	Total switching losses	T _J = 125 °C (see Figure 18)		770		μJ

Eon is the tun-on losses when a typical diode is used in the test circuit in *Figure 18*. If the IGBT is offered
in a package with a co-pak diode, the co-pack diode is used as external diode. IGBTs and diode are at the
same temperature (25 °C and 125 °C). Eon include diode recovery energy.

Table 9. Collector-emitter diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{F}	Forward on-voltage	I _F = 20 A I _F = 20 A, T _J = 125 °C	-	1.8 1.4	2.25	V V
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_F = 20 A,V _R = 50 V, di/dt = 100 A/ μ s (see Figure 19)	-	50 90 3	-	ns nC A
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_F = 20 \text{ A}, V_R = 50 \text{ V},$ $T_J = 125 ^{\circ}\text{C}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ (see Figure 19)	-	135 375 5.5	-	ns nC A

2.1 Electrical characteristics (curves)

Figure 2. Output characteristics

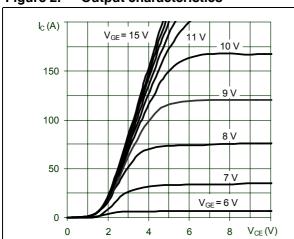


Figure 3. Transfer characteristics

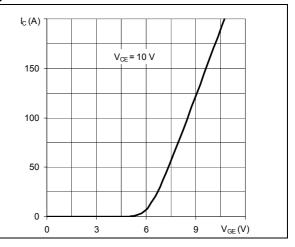


Figure 4. Normalized $V_{CE(sat)}$ vs. I_C

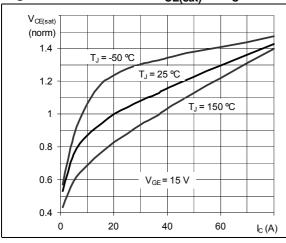


Figure 5. Normalized $V_{CE(sat)}$ vs. temperature

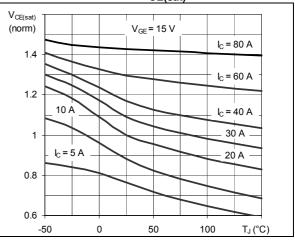
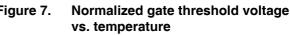
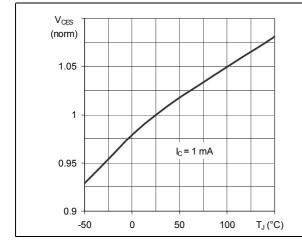
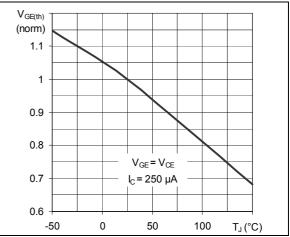
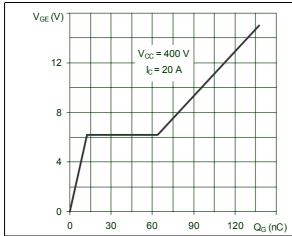





Figure 6. Normalized breakdown voltage vs. Figure 7. temperature



Electrical characteristics STGW35HF60WD

Figure 8. Gate charge vs. gate-emitter voltage

Figure 9. Capacitance variations

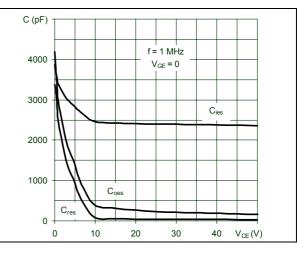
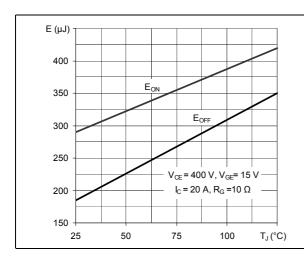



Figure 10. Switching losses vs temperature

Figure 11. Switching losses vs. gate resistance

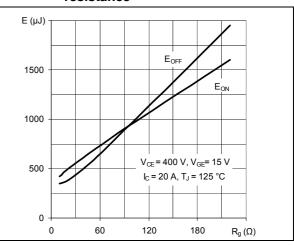
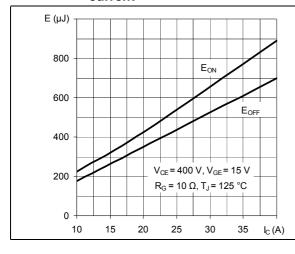



Figure 12. Switching losses vs. collector current

Figure 13. Turn-off SOA

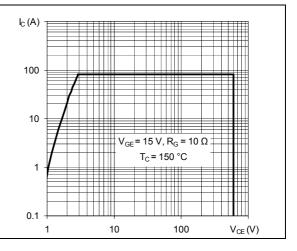
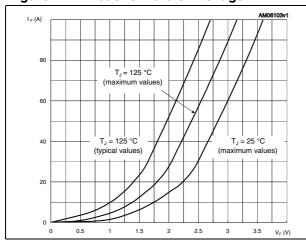
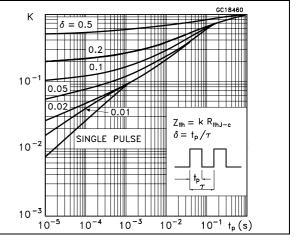




Figure 14. Diode forward on voltage

Figure 15. Thermal impedance

Test circuits STGW35HF60WD

3 Test circuits

Figure 16. Test circuit for inductive load switching

Figure 17. Gate charge test circuit

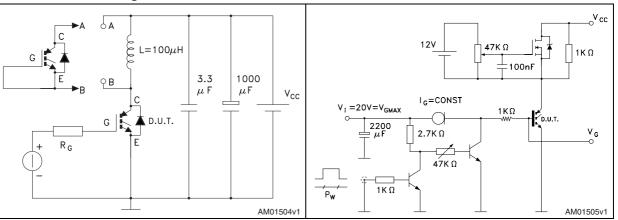
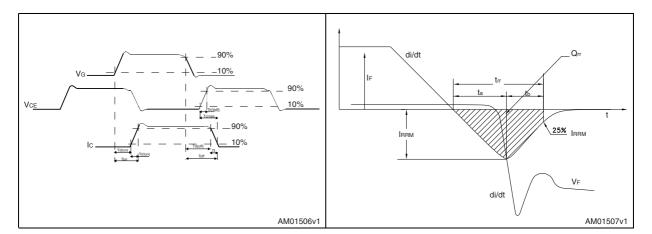
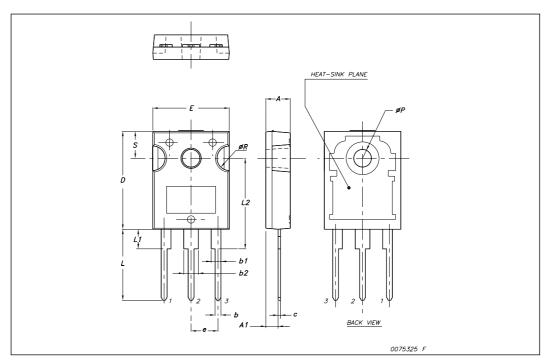



Figure 18. Switching waveform

Figure 19. Diode recovery time waveform


8/12 Doc ID 15592 Rev 5

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

TO-247 Mechanical data

Dim.		mm.	
Dilli.	Min.	Тур	Max.
Α	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е		5.45	
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
øΡ	3.55		3.65
øR	4.50		5.50
S		5.50	

STGW35HF60WD Revision history

5 Revision history

Table 10. Document revision history

Date	Revision	Changes
14-Apr-2009	1	Initial release.
03-Aug-2009	2	Inserted dynamic parameters on <i>Table 6</i> an <i>Table 7</i> Document status promoted from preliminary data to datasheet
02-Sep-2009	3	Minor text changes throughout the document Removed watermark
30-Sep-2009	4	Inserted V _{CE(sat)} grouping A, B and C (see <i>Table 5: VCE(sat)</i> classification)
10-May-2010	5	Inserted Section 2.1: Electrical characteristics (curves)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

12/12 Doc ID 15592 Rev 5

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

 748152A
 APT20GT60BRDQ1G
 APT50GT60BRG
 NGTB10N60FG
 STGFW20V60DF
 APT30GP60BG
 APT45GR65B2DU30

 GT50JR22(STA1ES)
 TIG058E8-TL-H
 VS-CPV364M4KPBF
 NGTB25N120FL2WAG
 NGTG40N120FL2WG
 RJH60F3DPQ-A0#T0

 APT40GR120B2SCD10
 APT15GT120BRG
 APT20GT60BRG
 NGTB75N65FL2WAG
 NGTG15N120FL2WG
 IXA30RG1200DHGLB

 IXA40RG1200DHGLB
 APT70GR65B2DU40
 NTE3320
 IHFW40N65R5SXKSA1
 APT70GR120J
 APT35GP120JDQ2

 IKZA40N65RH5XKSA1
 IKFW75N65ES5XKSA1
 IKFW50N65ES5XKSA1
 IKFW50N65EH5XKSA1
 IKFW40N65ES5XKSA1

 IKFW60N65ES5XKSA1
 IMBG120R090M1HXTMA1
 IMBG120R220M1HXTMA1
 XD15H120CX1
 XD25H120CX0
 XP15PJS120CL1B1

 IGW30N60H3FKSA1
 STGWA8M120DF3
 IGW08T120FKSA1
 IGW75N60H3FKSA1
 HGTG40N60B3
 FGH60N60SMD_F085

 FGH75T65UPD
 STGWA15H120F2
 IKA10N60TXKSA1
 IHW20N120R5XKSA1
 RJH60D2DPP-M0#T2
 IKP20N60TXKSA1

 IHW20N65R5XKSA1
 IDW40E65D2FKSA1