

STGWA30H65DFB

Trench gate field-stop IGBT, HB series 650 V, 30 A high speed in a TO-247 long leads package

Datasheet - production data

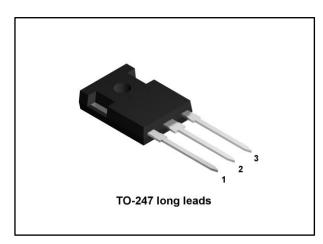
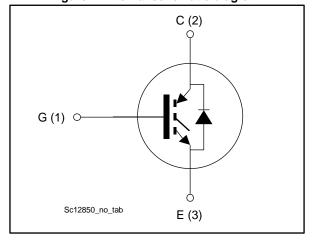



Figure 1: Internal schematic diagram

Features

- Maximum junction temperature: T_J = 175 °C
- High speed switching series
- Minimized tail current
- Low saturation voltage: V_{CE(sat)} = 1.55 V (typ.) @ I_C = 30 A
- Tight parameter distribution
- Safe paralleling
- Low thermal resistance
- Very fast soft recovery antiparallel diode

Applications

- Photovoltaic inverters
- High frequency converters

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the new HB series of IGBTs, which represents an optimum compromise between conduction and switching loss to maximize the efficiency of any frequency converter. Furthermore, the slightly positive VCE(sat) temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGWA30H65DFB	GWA30H65DFB	TO-247 long leads	Tube

Contents STGWA30H65DFB

Contents

1	Electrical ratings			
2	Electric	eal characteristics	4	
	2.1	Electrical characteristics (curves)	7	
3	Test cir	cuits	12	
4	Packag	e mechanical data	13	
	4.1	TO-247 long leads package information	13	
5	Revisio	n history	15	

STGWA30H65DFB Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter Value		
Vces	Collector-emitter voltage (V _{GE} = 0 V)	650	V
la.	Continuous collector current at T _C = 25 °C	60	А
lc	Continuous collector current at T _C = 100 °C	30	A
ICP ⁽¹⁾	Pulsed collector current	120	Α
V_{GE}	Gate-emitter voltage ±2		V
	Continuous forward current at T _C = 25 °C	60	А
IF	Continuous forward current at T _C = 100 °C	30	A
I _{FP} ⁽¹⁾	Pulsed forward current 120		Α
Ртот	Total dissipation at T _C = 25 °C 260		W
Tstg	Storage temperature range - 55 to 150		°C
TJ	Operating junction temperature range	- 55 to 175	

Notes:

Table 3: Thermal data

	Symbol	Parameter V		Unit
Ī	RthJC	Thermal resistance junction-case IGBT	0.58	
	R _{th} JC	Thermal resistance junction-case diode 1.47		°C/W
	R _{thJA} Thermal resistance junction-ambient 50			

 $^{^{(1)}}$ Pulse width limited by maximum junction temperature.

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Table 4: Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	$V_{GE} = 0 \text{ V}, I_C = 2 \text{ mA}$	650			٧
		$V_{GE} = 15 \text{ V}, I_{C} = 30 \text{ A}$		1.55	2	
V _{CE(sat)} Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 30 A, T _J = 125 °C		1.65		V	
	Saturation voltage	V _{GE} = 15 V, I _C = 30 A, T _J = 175 °C		1.75		
		I _F = 30 A		1.85	2.65	
V_{F}	Forward on-voltage	I _F = 30 A, T _J = 125 °C		1.6		V
		I _F = 30 A, T _J = 175 °C		1.5		
$V_{GE(th)}$	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 1$ mA	5	6	7	V
I _{CES}	Collector cut-off current	V _{GE} = 0 V, V _{CE} = 650 V			25	μΑ
Iges	Gate-emitter leakage current	Vce = 0 V, VgE = ±20 V			±250	nA

Table 5: Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		-	3570	ı	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	-	143	ı	pF
Cres	Reverse transfer capacitance	VCE- 25 V, I - I WIIZ, VGE - 0 V	-	75	ı	ρ.
Qg	Total gate charge	Vcc = 520 V, Ic = 30 A,	-	149	ı	
Q_{ge}	Gate-emitter charge	V _{GE} = 0 to 15 V (see <i>Figure 29: " Gate charge</i>	-	25	ı	nC
Q _{gc}	Gate-collector charge	test circuit")	-	62	-	

Table 6: IGBT switching characteristics (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	46	-	
tr	Current rise time		-	14.6	-	ns
(di/dt) _{on}	Turn-on current slope		-	1616	-	A/µs
t _{d(off)}	Turn-off-delay time	V _{CE} = 400 V, I _C = 30 A,	-	146	-	20
t _f	Current fall time	$V_{GE} = 15 \text{ V}, R_G = 10 \Omega$	-	23	-	ns
E _{on} ⁽¹⁾	Turn-on switching energy	(see Figure 28: " Test circuit for inductive load switching")	-	382	-	
E _{off} ⁽²⁾	Turn-off switching energy			293	-	μJ
Ets	Total switching energy			675	-	
t _{d(on)}	Turn-on delay time			45	-	20
tr	Current rise time			17.8	-	ns
(di/dt) _{on}	Turn-on current slope		-	1393	-	A/µs
t _{d(off)}	Turn-off-delay time	VcE = 400 V, Ic = 30 A,	-	158	-	
tf	Current fall time	V _{GE} = 15 V, R _G = 10 Ω, T _J = 175 °C	-	65	-	ns
E _{on} ⁽¹⁾	Turn-on switching energy	(see Figure 28: " Test circuit for inductive load switching")	-	725	-	
E _{off} ⁽²⁾	Turn-off switching energy		-	572	-	μJ
E _{ts}	Total switching energy		-	1297	-	

Notes:

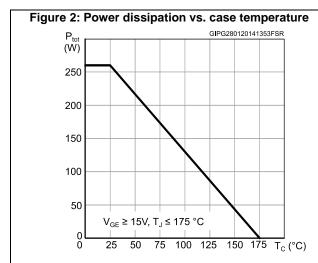
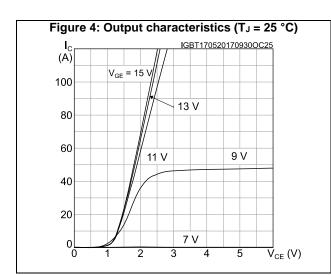
 $[\]ensuremath{^{(1)}}\xspace$ Including the reverse recovery of the diode.

 $[\]ensuremath{^{(2)}}\xspace$ Including the tail of the collector current.

Table 7: Diode switching characteristics (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time		-	140	-	ns
Qrr	Reverse recovery charge			880	ı	nC
I _{rrm}	Reverse recovery current	$I_F = 30 \text{ A}, V_R = 400 \text{ V}, V_{GE} = 15 \text{ V},$ $di/dt = 1000 \text{ A/}\mu\text{s}$	-	17	ı	Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b	(see Figure 28: " Test circuit for inductive load switching")	-	650	ı	A/µs
Err	Reverse recovery energy		-	115	ı	μJ
t _{rr}	Reverse recovery time			244	-	ns
Q _{rr}	Reverse recovery charge		-	2743	ı	nC
Irrm	Reverse recovery current	$I_F = 30 \text{ A}, V_R = 400 \text{ V}, V_{GE} = 15 \text{ V},$ $di/dt = 1000 \text{ A/}\mu\text{s}, T_J = 175 ^{\circ}\text{C}$	-	25	-	Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b	(see Figure 28: " Test circuit for inductive load switching")	-	220	-	A/µs
Err	Reverse recovery energy		-	320	-	μJ

2.1 Electrical characteristics (curves)

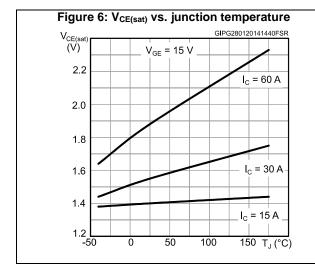


Figure 3: Collector current vs. case temperature $\begin{pmatrix} I_C & & & & \\ I_C & & \\ I_C$

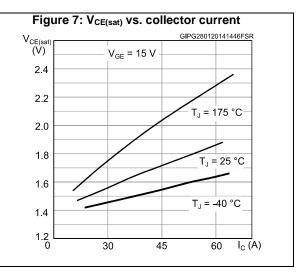
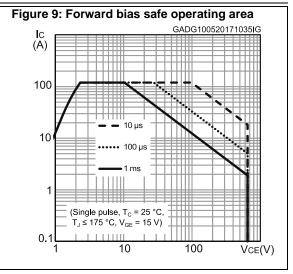
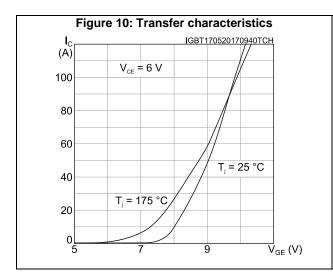
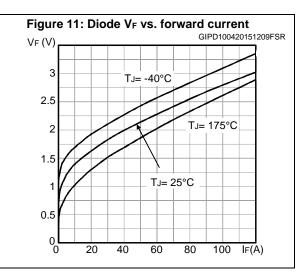
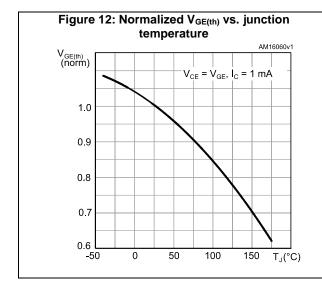






Figure 8: Collector current vs. switching frequency I_{C} (A) I_{C} (BBT170520170937CCS (A) I_{C} (BBT170520170937CCS (A) I_{C} (BCT170520170937CCS (BCT170520170

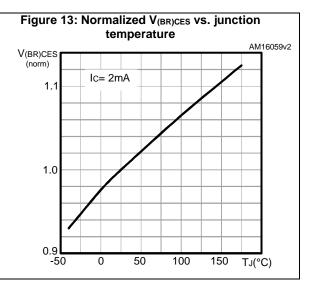
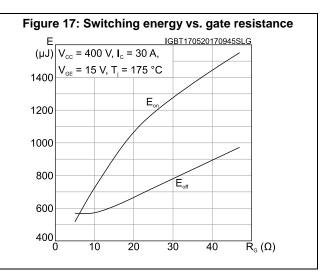
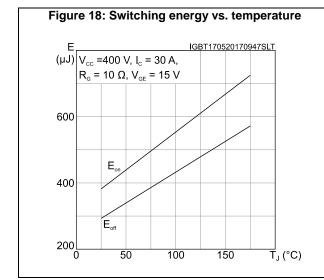
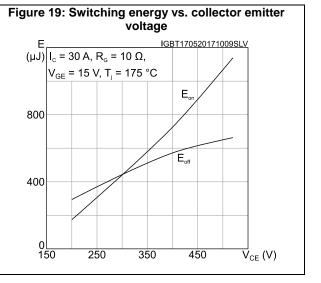
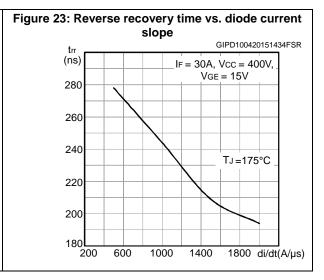
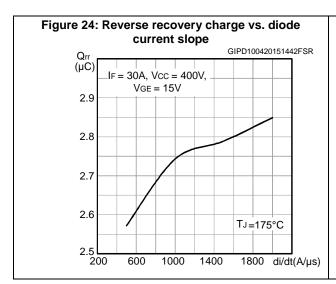
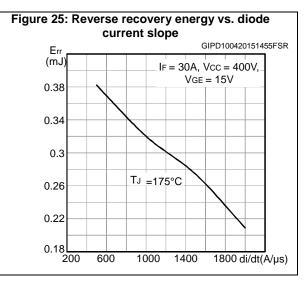
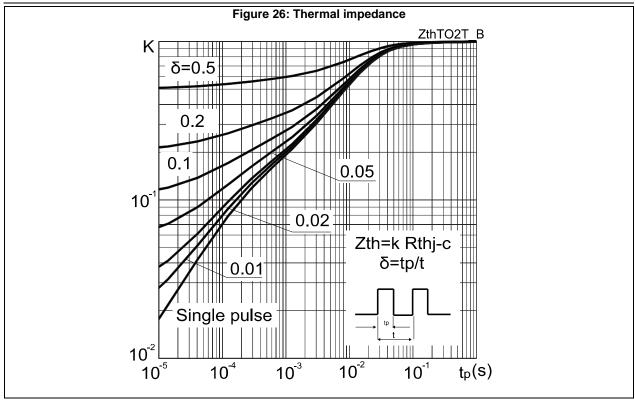
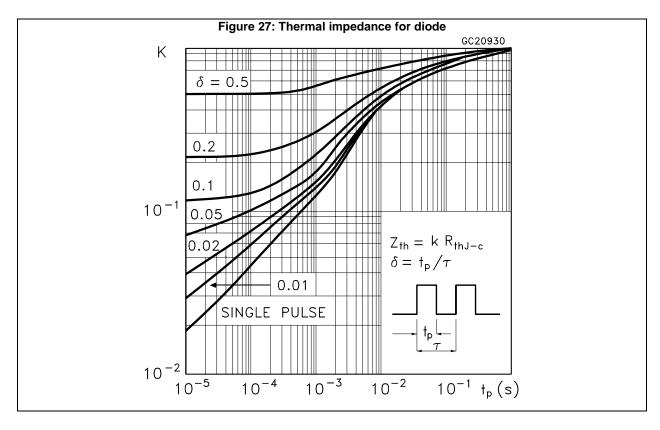




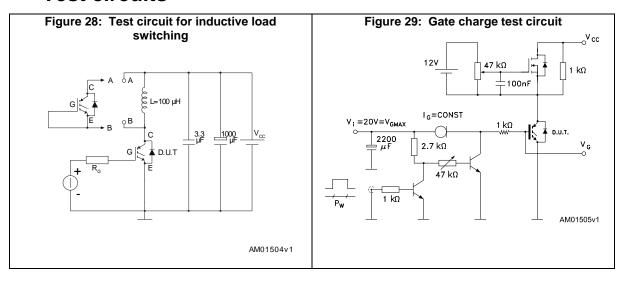
Figure 14: Capacitance variations C (pF) 10^{3} f = 1 MHz C_{oes} C_{res} C_{res}

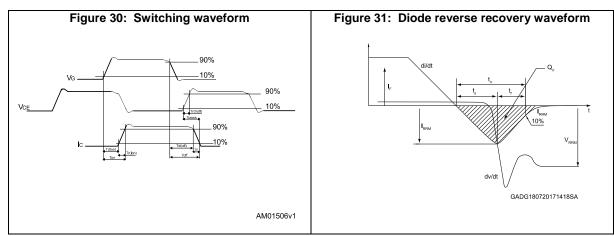
Figure 15: Gate charge vs. gate-emitter voltage $V_{GE}(V)$ $V_{CC} = 520 \text{ V}, I_{C} = 30 \text{ A}$ 16 $I_G = 1mA$ 14 12 10 8 6 4 2 80 120 160 Qg (nC) 40


Figure 20: Switching times vs. collector current transfer (ns) $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 10 \Omega, T_J = 175 °C$ $t_{d(off)}$ $t_{d(off)}$ $t_{d(on)}$ $t_{d(on)}$


Figure 22: Reverse recovery current vs. diode current slope GIPD100420151417FSR Irm (A) IF = 30A, Vcc = 400V VGE = 15V 40 35 30 TJ=175°C 25 20 15 L 200 1800 di/dt(A/µs) 600 1000 1400





Test circuits STGWA30H65DFB

3 Test circuits

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-247 long leads package information

HEAT-SINK PLANE øΡ E3 A2-Ď A1. *b2* (3x) b 8463846_2_F

Figure 32: TO-247 long leads package outline

14/16

Table 8: TO-247 long leads package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
A	4.90 5.00 5.10		5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.26
b2			3.25
b3			2.25
С	0.59		0.66
D	20.90	21.00	21.10
Е	15.70	15.80	15.90
E2	4.90 5.00		5.10
E3	2.40	2.50	2.60
е	5.34	5.44	5.54
L	19.80	19.92	20.10
L1			4.30
Р	3.50	3.60	3.70
Q	5.60		6.00
S	6.05	6.15	6.25

STGWA30H65DFB Revision history

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
16-May-2017	1	Initial version.
22-Nov-2017	2	Modified title and <i>Table 7: "Diode switching characteristics (inductive load)"</i> . Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

 748152A
 FGH60T65SHD_F155
 APT100GT60B2RG
 APT13GP120BG
 APT20GN60BG
 APT20GT60BRDQ1G
 APT25GN120B2DQ2G

 APT35GA90BD15
 APT36GA60BD15
 APT40GP60B2DQ2G
 APT40GP90B2DQ2G
 APT50GN120B2G
 APT50GT60BRG

 APT64GA90B2D30
 APT70GR120J
 NGTB10N60FG
 NGTB30N60L2WG
 NGTG25N120FL2WG
 IGP30N60H3XKSA1
 STGB15H60DF

 STGFW20V60DF
 STGFW40V60DF
 STGFW40V60F
 STGWA25H120DF2
 FGB3236_F085
 APT25GN120BG
 APT25GR120S

 APT30GN60BDQ2G
 APT30GN60BG
 APT30GS60BRDQ2G
 APT30N60BC6
 APT35GP120JDQ2
 APT36GA60B

 APT45GR65B2DU30
 APT50GP60B2DQ2G
 APT68GA60B
 APT70GR65B
 APT70GR65B2SCD30
 GT50JR22(STA1ES)
 TIG058E8-TL-H

 IDW40E65D2
 NGTB50N60L2WG
 STGB10H60DF
 STGB20V60F
 STGB40V60F
 STGFW80V60F
 IGW40N120H3FKSA1

 RJH60D7BDPQ-E0#T2
 APT40GR120B