Trench gate field-stop IGBT, M series 650 V, 75 A low-loss in TO-247 and TO-247 long leads packages

Datasheet - production data

Figure 1: Internal schematic diagram

Features

- $6 \mu \mathrm{~s}$ of short-circuit withstand time
- $\quad V_{C E(\text { sat })}=1.65 \mathrm{~V}$ (typ.) @ $\mathrm{I}_{\mathrm{c}}=75 \mathrm{~A}$
- Tight parameter distribution
- Safer paralleling
- Positive $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ temperature coefficient
- Low thermal resistance
- Soft and very fast recovery antiparallel diode
- Maximum junction temperature: $\mathrm{T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$

Applications

- Motor control
- UPS
- PFC
- General purpose inverter

Description

These devices are IGBTs developed using an advanced proprietary trench gate field-stop structure. The devices are part of the M series IGBTs, which represent an optimal balance between inverter system performance and efficiency where low-loss and short-circuit functionality are essential. Furthermore, the positive $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ temperature coefficient and tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGW75M65DF2	G75M65DF2	TO-247	Tube
		TO-247 long leads	

Contents

1 Electrical ratings 3
2 Electrical characteristics 4
2.1 Electrical characteristics (curves) 6
3 Test circuits 12
4 Package information 13
4.1 TO-247 package information 13
4.2 TO-247 long leads package information 15
5 Revision history 17

1

Electrical ratings
Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CES }}$	Collector-emitter voltage $(\mathrm{V}$ GE $=0 \mathrm{~V})$	650	V
$\mathrm{I}^{(1)}$	Continuous collector current at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	120	A
I_{C}	Continuous collector current at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	75	A
$\mathrm{I}_{\mathrm{CP}}{ }^{(2)}$	Pulsed collector current	225	A
$\mathrm{~V}_{\mathrm{GE}}$	Gate-emitter voltage	± 20	V
$\mathrm{IF}^{(1)}$	Continuous forward current at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	120	A
I_{F}	Continuous forward current at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	75	A
$\mathrm{I}_{\text {FP }}{ }^{(2)}$	Pulsed forward current	225	A
$\mathrm{P}_{\text {TOT }}$	Total dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	468	W
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-55 to 150	${ }^{\circ} \mathrm{C}$
T_{J}	Operating junction temperature range	-55 to 175	${ }^{\circ} \mathrm{C}$

Notes:

${ }^{(1)}$ Current level is limited by bond wires
${ }^{(2)}$ Pulse width limited by maximum junction temperature.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
$R_{\text {thJc }}$	Thermal resistance junction-case IGBT	0.32	${ }^{\circ} \mathrm{C} / \mathrm{W}$
RthJc	Thermal resistance junction-case diode	0.74	${ }^{\circ} \mathrm{C} / \mathrm{W}$
RthJA	Thermal resistance junction-ambient	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$

2 Electrical characteristics

$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Table 4: Static characteristics

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {(BR)CES }}$	Collector-emitter breakdown voltage	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{lc}=250 \mu \mathrm{~A}$	650			V
$\mathrm{V}_{\text {CE(sat) }}$	Collector-emitter saturation voltage	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}$		1.65	2.1	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{IC}=75 \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$		1.95		
		$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{Ic}=75 \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{aligned}$		2.1		
V_{F}	Forward on-voltage	$\mathrm{I}_{F}=75 \mathrm{~A}$		2	2.85	V
		$\mathrm{I}_{\mathrm{F}}=75 \mathrm{~A}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$		1.75		
		$\mathrm{I}_{\mathrm{F}}=75 \mathrm{~A}, \mathrm{~T}_{J}=175^{\circ} \mathrm{C}$		1.6		
$\mathrm{VGE}_{\text {GE (th) }}$	Gate threshold voltage	$\mathrm{V}_{\text {CE }}=\mathrm{V}_{\mathrm{GE}}, \mathrm{lc}=2 \mathrm{~mA}$	5	6	7	V
Ices	Collector cut-off current	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=650 \mathrm{~V}$			25	$\mu \mathrm{A}$
Iges	Gate-emitter leakage current	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			± 250	$\mu \mathrm{A}$

Table 5: Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
Cies	Input capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \end{aligned}$	-	6290	-	pF
$\mathrm{Coses}^{\text {a }}$	Output capacitance		-	390	-	
Cres	Reverse transfer capacitance		-	136	-	
Q_{g}	Total gate charge	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=520 \mathrm{~V}, \mathrm{Ic}=75 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GE}}=0 \text { to } 15 \mathrm{~V} \\ & \text { (see Figure } 30 \text { : "Gate } \\ & \text { charge test circuit") } \end{aligned}$	-	225	-	nC
Qge	Gate-emitter charge		-	53	-	
Qgc	Gate-collector charge		-	87	-	

Table 6: IGBT switching characteristics (inductive load)

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {d(on) }}$	Turn-on delay time	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=3.3 \Omega \end{aligned}$ (see Figure 29: " Test circuit for inductive load switching")		47	-	ns
tr	Current rise time			22.4	-	ns
(di/dt) on	Turn-on current slope			2680	-	A/ $\mu \mathrm{s}$
td (off) $^{\text {d }}$	Turn-off-delay time			125	-	ns
tf_{f}	Current fall time			93	-	ns
Eon ${ }^{(1)}$	Turn-on switching energy			0.69	-	mJ
$\mathrm{E}_{\text {off }}{ }^{(2)}$	Turn-off switching energy			2.54	-	mJ
$\mathrm{E}_{\text {ts }}$	Total switching energy			3.23	-	mJ
tdon)	Turn-on delay time	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{RG}_{\mathrm{G}}=3.3 \Omega \\ & \mathrm{~T}_{J}=175^{\circ} \mathrm{C} \end{aligned}$ (see Figure 29: " Test circuit for inductive load switching")		48	-	ns
tr_{r}	Current rise time			25	-	ns
(di/dt) ${ }_{\text {on }}$	Turn-on current slope			2420	-	A/ $/ \mathrm{s}$
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off-delay time			125	-	ns
tf_{f}	Current fall time			167	-	ns
Eon(1)	Turn-on switching energy			2.17	-	mJ
$\mathrm{E}_{\text {off }}{ }^{(2)}$	Turn-off switching energy			3.45	-	mJ
$\mathrm{E}_{\text {ts }}$	Total switching energy			5.62	-	mJ
$\mathrm{tsc}_{\text {c }}$	Short-circuit withstand time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq 400 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=13 \mathrm{~V}, \\ & \mathrm{~T}_{\text {Jstart }} \leq 150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	10		-	$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq 400 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \mathrm{~T}_{\text {start }} \leq 150^{\circ} \mathrm{C} \end{aligned}$	6			

Notes:

${ }^{(1)}$ Including the reverse recovery of the diode.
${ }^{(2)}$ Including the tail of the collector current.

Table 7: Diode switching characteristics (inductive load)

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
trr	Reverse recovery time	$\begin{aligned} & \text { IF }=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \text { di/dt }=1000 \mathrm{~A} / \mu \mathrm{s} \\ & \text { (see Figure 29: " Test } \\ & \text { circuit for inductive load } \\ & \text { switching") } \end{aligned}$	-	165	-	ns
Q_{rr}	Reverse recovery charge		-	1.72	-	$\mu \mathrm{C}$
Irm	Reverse recovery current		-	25	-	A
dl $\mathrm{rr}_{\mathrm{r}} / \mathrm{dt}$	Peak rate of fall of reverse recovery current during to		-	750	-	A/ $\mu \mathrm{s}$
$\mathrm{Errr}^{\text {r }}$	Reverse recovery energy		-	289	-	$\mu \mathrm{J}$
trr	Reverse recovery time	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \mathrm{di} / \mathrm{dt}=1000 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \\ & \text { (see Figure 29: " Test } \\ & \text { circuit for inductive load } \\ & \text { switching") } \end{aligned}$	-	256	-	ns
Qrr	Reverse recovery charge		-	6.85	-	$\mu \mathrm{C}$
Irm	Reverse recovery current		-	48	-	A
dlr $\mathrm{r}^{\prime} / \mathrm{dt}$	Peak rate of fall of reverse recovery current during tb		-	300	-	A/ $\mu \mathrm{s}$
$E_{r r}$	Reverse recovery energy		-	1033	-	$\mu \mathrm{J}$

2.1 Electrical characteristics (curves)

Figure 2: Power dissipation vs. case temperature

Figure 3: Collector current vs. case temperature

Figure 4: Output characteristics ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)

Figure 5: Output characteristics ($\mathrm{T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$)

Figure 6: $\mathrm{V}_{\mathrm{CE}(\text { sat) }}$ vs. junction temperature

Figure 7: $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ vs. collector current

Figure 8: Collector current vs. switching frequency

Figure 9: Forward bias safe operating area

Figure 11: Diode V_{F} vs. forward current

Figure 12: Normalized $\mathrm{V}_{\mathrm{GE}(\mathrm{th})}$ vs. junction temperature

Figure 13: Normalized $V_{\text {(BR)CES }}$ Vs. junction temperature

Figure 16: Switching energy vs. collector current

Figure 17: Switching energy vs. gate resistance

Figure 19: Switching energy vs. collector emitter voltage

Figure 20: Short-circuit time and current vs. VGE

Figure 21: Switching times vs. collector current

Figure 22: Switching times vs. gate resistance

Figure 23: Reverse recovery current vs. diode current slope
$\mathrm{I}_{\mathrm{rrm}}$ IGBT150620161541RRC

Figure 24: Reverse recovery time vs. diode current slope

Figure 25: Reverse recovery charge vs. diode current slope

Figure 26: Reverse recovery energy vs. diode current slope

Figure 27: Thermal impedance for IGBT

Figure 28: Thermal impedance for diode

3 Test circuits

Figure 32: Diode reverse recovery waveform

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

4.1 TO-247 package information

Figure 33: TO-247 package outline

Table 8: TO-247 package mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
c	0.40		0.80
D	19.85		20.15
E	15.45		15.75
e	5.30		5.60
L	14.20		14.80
L1	3.70		4.30
L2			3.50
\varnothing P	3.55		5.65
$\varnothing R$	4.50		5.70
S	5.30		

4.2 TO-247 long leads package information

Figure 34: TO-247 long leads package outline

Table 9: TO-247 long leads package mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.26
b2			3.25
b3	0.59	21.00	2.25
c	20.90	15.80	0.66
D	15.70	5.00	21.10
E	4.90	2.50	15.90
E2	2.40	5.44	5.10
E3	5.34	19.92	2.60
e	19.80		5.54
L			20.10
L1	3.50		4.30
P	5.60		3.70
Q	6.05	6.15	6.00
S			6.25

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
02-Dec-2015	1	First release.
15-Jun-2016	2	Inserted device in TO-247 and document updated accordingly. Inserted Section 2.1: "Electrical characteristics (curves)".
Document status promoted from preliminary to production data. Minor text changes.		
03-May-2017	3	Modified: title, features and application on cover page. Modified Table 4: "Static characteristics", Table 7: "Diode switching characteristics (inductive load)" and Figure 13: "Normalized $V_{\text {(BR)CES vs. junction temperature ". }}$ Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Transistors category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0\#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB

IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2
IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 HGTG40N60B3 FGH60N60SMD_F085

FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0\#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1 IDW40E65D2FKSA1

