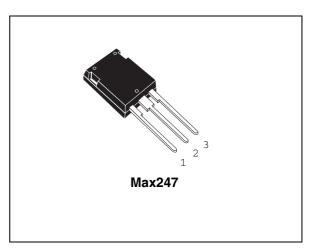


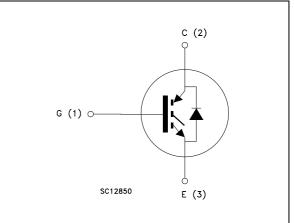
STGY50NC60WD

50 A, 600 V, ultra fast IGBT

Features


- Very high frequency operation
- Low C_{RES} / C_{IES} ratio (no cross-conduction susceptibility)
- Very soft ultra fast recovery antiparallel diode

Applications


- Very high frequency inverters, UPS
- HF, SMPS and PFC in both hard switch and resonant topologies
- Motor drivers
- Welding

Description

This IGBT utilizes the advanced Power MESH[™] process resulting in an excellent trade-off between switching performance and low on-state behavior.

Figure 1. Internal schematic diagram

Table 1.Device summary

Order code	Marking	Package	Packaging
STGY50NC60WD	GY50NC60WD	Max247	Tube

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves)
3	Test circuit
4	Package mechanical data 11
5	Revision history

1 Electrical ratings

Table 1.	Absolute maxim	num ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	600	V
I _C ⁽¹⁾	Collector current (continuous) at $T_C = 25 \ ^{\circ}C$	110	A
I _C ⁽¹⁾	Collector current (continuous) at $T_C = 100 \ ^{\circ}C$	50	A
I _{CL} ⁽²⁾	Turn-off latching current	180	A
I _{CP} ⁽³⁾	Pulsed collector current	180	A
١ _F	Diode RMS forward current at $T_C = 25 \ ^{\circ}C$	30	A
I _{FSM}	Surge not repetitive forward current (t _p =10 ms sinusoidal)	120	A
V _{GE}	Gate-emitter voltage	±20	V
P _{TOT}	Total dissipation at $T_{C} = 25 \ ^{\circ}C$	278	W
Тj	Operating junction temperature	-55 to 150	°C

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

- 2. V_{clamp} = 80% of V_{CES}, T_j =150 °C, R_G=10 Ω , V_{GE}=15 V
- 3. Pulse width limited by max. temperature allowed

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case IGBT max.	0.45	°C/W
R _{thj-case}	Thermal resistance junction-case diode max.	1.5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max.	50	°C/W

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5.	Static					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1 mA	600			V
V _{CE(sat)}	Collector-emitter saturation voltage	$V_{GE} = 15 \text{ V}, \text{ I}_{C} = 40 \text{ A}$ $V_{GE} = 15 \text{ V}, \text{ I}_{C} = 40 \text{ A}, \text{T}_{C} = 125 \text{ °C}$		2.1 1.9	2.6	V V
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 250 \ \mu A$	3.75		5.75	V
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} = 600 V V _{CE} = 600 V,T _C = 125 °C			500 5	μA mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ±20 V			±100	nA
9 _{fs}	Forward transconductance	$V_{CE} = 15 \text{ V}, \text{ I}_{C} = 40 \text{ A}$		25		S

Table 3. Static

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0		4700 410 90		pF pF pF
Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	$V_{CE} = 390 \text{ V}, I_{C} = 40 \text{ A},$ $V_{GE} = 15 \text{ V},$ <i>Figure 16</i>		195 32 82		nC nC nC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390 \text{ V, I}_{C} = 40 \text{ A}$ R_{G} = 10 Ω , V_{GE} = 15 V, <i>Figure 17, Figure 15</i>		52 17 2400		ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390 \text{ V, } I_C = 40 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V,}$ $T_C = 125 \text{ °C}$ Figure 17, Figure 15		50 19 2020		ns ns A/µs
t _{r(Voff)} t _{d(Voff)} t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 390 \text{ V}, I_C = 40 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ <i>Figure 17, Figure 15</i>		31 240 35		ns ns ns
t _{r(Voff)} t _{d(Voff)} t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 390 \text{ V}, I_C = 40 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_C = 125 \text{ °C}$ <i>Figure 17, Figure 15</i>		59 280 63		ns ns ns

 Table 5.
 Switching on/off (inductive load)

 Table 6.
 Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 390 \text{ V}, I_{C} = 40 \text{ A}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V},$ <i>Figure 15</i>		365 560 925	470 790 1260	μJ μJ μJ
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 390 \text{ V}, I_C = 40 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_C = 125 \text{ °C}$ <i>Figure 15</i>		635 910 1545		μJ μJ μJ

 Eon is the tun-on losses when a typical diode is used in the test circuit in *Figure 18* If the IGBT is offered in a package with a co-pak diode, the co-pack diode is used as external diode. IGBTs & Diode are at the same temperature (25°C and 125°C)

2. Turn-off losses include also the tail of the collector current

57

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _F	Forward on-voltage	I _F = 40 A I _F = 40 A, T _C = 125 °C		3.2 2.2		V V
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _F = 40 A,V _R = 50 V, di/dt = 100 A/μs <i>Figure 18</i>		55 100 3.6		ns nC A
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_F = 40 \text{ A}, V_R = 50 \text{ V},$ $T_C = 125 \text{ °C},$ di/dt = 100 A/µs (<i>Figure 18</i>)		164 525 6.4		ns nC A

 Table 7.
 Collector-emitter diode

HV35335 Vce=15V

2.1 Electrical characteristics (curves)

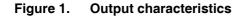
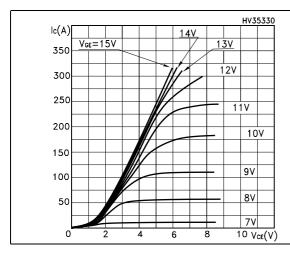
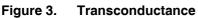


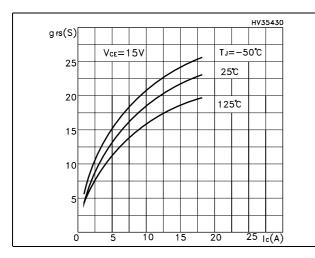
Figure 2. Transfer characteristics

lc(A)

350

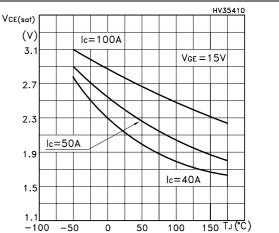

300

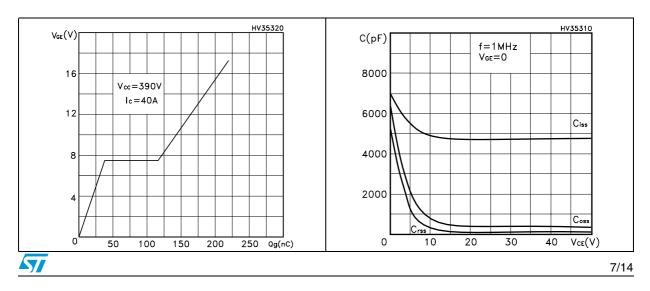

250


200


150

100





57

Figure 7. Normalized gate threshold voltage Figure 8. vs temperature

e 8. Collector-emitter on voltage vs collector current

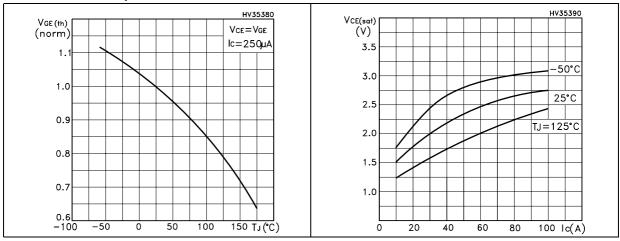
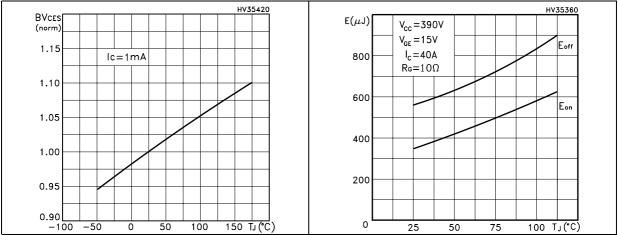
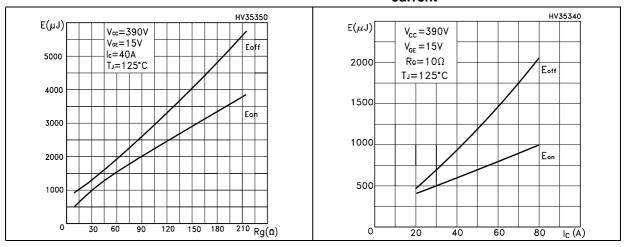
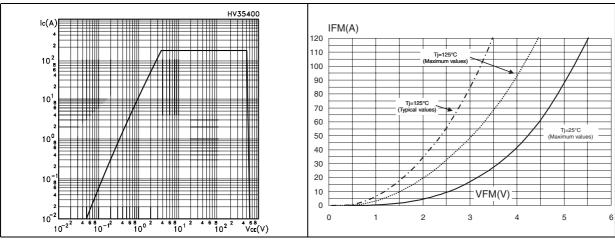


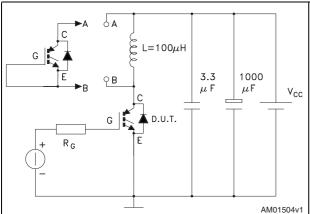
Figure 9. Normalized breakdown voltage vs Figure 10. Switching losses vs temperature temperature


Figure 11. Switching losses vs gate resistance Figure 12. Switching losses vs collector current

8/14

Figure 13. Turn-off SOA



3 Test circuit

Figure 15. Test circuit for inductive load switching

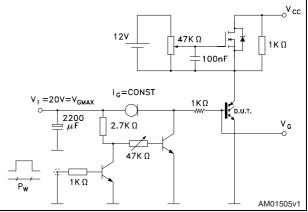
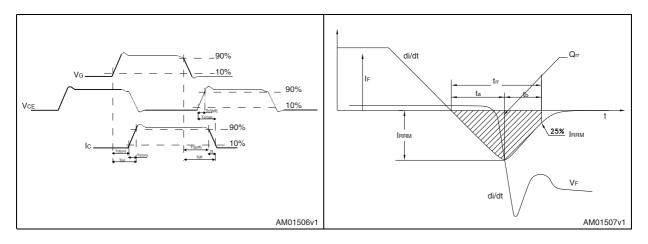
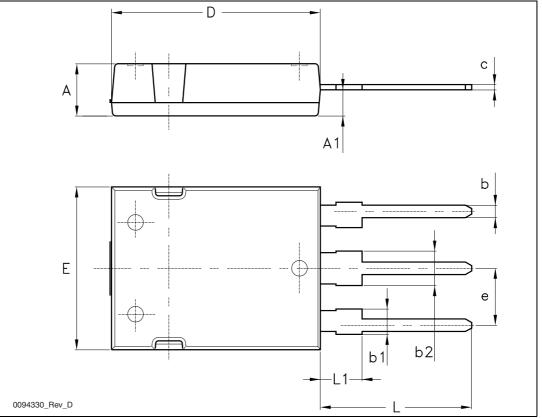



Figure 17. Switching waveform

Figure 16. Gate charge test circuit

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.



57

Dim.		mm				
Dim.	Min.	Тур.	Max.			
А	4.70		5.30			
A1	2.20		2.60			
b	1.00		1.40			
b1	2.00		2.40			
b2	3.00		3.40			
С	0.40		0.80			
D	19.70		20.30			
е	5.35		5.55			
E	15.30		15.90			
L	14.20		15.20			
L1	3.70		4.30			

Table 8. Max247 mechanical data

Figure 19. Max247 drawing

5 Revision history

Table 9.	Document revision history	
----------	---------------------------	--

Date	Revision	Changes
09-Oct-2006	1	Initial release.
07-May-2007	2	Complete version
02-Jul-2007	3	Modified value on Table 2: Thermal resistance
04-Nov-2008	4	<i>Table 8: Max247 mechanical data</i> and <i>Figure 19: Max247 drawing</i> have been updated.
09-Jan-2009	5	Figure 13: Turn-off SOA has been updated.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2 IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 HGTG40N60B3 FGH60N60SMD_F085 FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1 IDW40E65D2FKSA1