SLLIMM - $2^{\text {nd }}$ series IPM, 3-phase inverter, 0.15Ω typ., $15 \mathrm{~A}, 600 \mathrm{~V}$ Power MOSFET

SDIP2B-26L type L

Product status link

STIB1560DM2T-L

Product summary	
Order code	STIB1560DM2T-L
Marking	IB1560DM2T-L
Package	SDIP2B-26L type L
Packing	Tube

Features

- IPM $15 \mathrm{~A}, 600 \mathrm{~V}$, 3-phase MOSFET inverter bridge including 2 control ICs for gate driving
- $3.3 \mathrm{~V}, 5 \mathrm{~V}$ TTL/CMOS inputs with hysteresis
- Internal bootstrap diode
- Undervoltage lockout of gate drivers
- Smart shutdown function
- Short-circuit protection
- Shutdown input/fault output
- Separate open-source outputs
- Built-in temperature sensor
- Comparator for fault protection
- Fast, soft recovery diodes
- $85 \mathrm{k} \Omega \mathrm{NTC}$, UL 1434, CA 4 recognized
- Fully isolated package
- Isolation rating of $1500 \mathrm{Vrms} / \mathrm{min}$
- UL recognition: UL 1557, file E81734

Applications

- 3-phase inverters for motor drives
- Linear and BLDC compressor
- Aircon

Description

This new IPM, belonging to the second series of SLLIMM (small low-loss intelligent molded module), provides a compact, high-performance AC motor drive in a simple, rugged design.

It combines new ST proprietary control ICs with the high-voltage N -channel superjunction MDMesh DM2, providing fast-recovery diode series to increase efficiency and minimize EMI and overall losses, making it ideal for any high-efficiency converter and 3-phase inverter system. SLLIMM is a trademark of STMicroelectronics.

Figure 1. Internal schematic diagram and pin configuration

Table 1. Pin description

Pin	Symbol	Description
1	NC	-
2	VBOOTu	Bootstrap voltage for U phase
3	VBOOTv	Bootstrap voltage for V phase
4	VBOOTw	Bootstrap voltage for W phase
5	HINu	High-side logic input for U phase
6	HINv	High-side logic input for V phase
7	HINw	High-side logic input for W phase
8	VCCH	High-side low voltage power supply
9	GND	Ground
10	LINu	Low-side logic input for U phase
11	LINv	Low-side logic input for V phase
12	LINw	Low-side logic input for W phase
13	VCCL	Low-side low voltage power supply
14	$\overline{S D} / O D$	Shutdown logic input (active low) / open-drain (comparator output)
15	CIN	Comparator input
16	GND	Ground
17	TSO	Temperature sensor output
18	NW	Negative DC input for W phase
19	NV	Negative DC input for V phase
20	NU	Negative DC input for U phase
21	W	W phase output
22	V	\checkmark phase output
23	U	U phase output
24	P	Positive DC input
25	T2	NTC thermistor terminal 2
26	T1	NTC thermistor terminal 1

$2 \quad$ Absolute maximum ratings

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Table 2. Inverter part

Symbol	Parameter	Value	Unit
$V_{P N}$	Supply voltage between P- $\mathrm{N}_{\mathrm{U}},-\mathrm{N}_{\mathrm{V}},-\mathrm{N}_{\mathrm{W}}$	450	V
$\mathrm{V}_{\mathrm{PN} \text { (surge) }}$	Supply voltage surge among P - $\mathrm{N}_{\mathrm{U}},-\mathrm{N}_{\mathrm{V}},-\mathrm{N}_{\mathrm{W}}$	500	V
$\mathrm{V}_{\text {DSS }}$	MOSFET blocking voltage (or drain-source voltage) for each MOSFET $\left(\mathrm{V}_{\mathrm{IN}^{(1)}}^{(1)}=0 \mathrm{~V}\right)$	600	V
$\pm \mathrm{l}_{\mathrm{D}}$	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	17	A
$\pm \mathrm{l}_{\mathrm{DP}}$	Peak drain current each MOSFET (less than 1 ms)	68	A
$\mathrm{P}_{\text {TOT }}$	Total power dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ each MOSFET	113	W
$\mathrm{t}_{\text {scw }}$	Short circuit withstand time, $\mathrm{V}_{\mathrm{DS}}=300 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {boot }}=15 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IN}}=0$ to 5 V	12	$\mu \mathrm{s}$

1. Applied among HINx, LINx and GND for $x=U, V, W$.

Table 3. Control part

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply voltage between $\mathrm{V}_{\mathrm{CCH}}-\mathrm{GND}, \mathrm{V}_{\mathrm{CCL}}-\mathrm{GND}$	- 0.3	20	V
$\mathrm{V}_{\text {BоOt }}$	Bootstrap voltage	- 0.3	619	V
Vout	Output voltage among $\mathrm{U}, \mathrm{V}, \mathrm{W}$ and GND	$\mathrm{V}_{\text {BOOT }}-21$	$\mathrm{V}_{\text {BOOT }}+0.3$	v
$\mathrm{V}_{\text {CIN }}$	Comparator input voltage	- 0.3	20	V
$\mathrm{V}_{\text {IN }}$	Logic input voltage applied among HINx, LINx and GND	-0.3	15	V
$V_{\text {SD/OD }}$	Open-drain voltage	-0.3	7	V
ISD/OD	Open-drain sink current		10	mA
$\mathrm{V}_{\text {TSO }}$	Temperature sensor output voltage	-0.3	5.5	V
Itso	Temperature sensor output current		7	mA

Table 4. Total system

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {ISO }}$	Isolation withstand voltage applied between each pin and heatsink plate (AC voltage, $\mathrm{t}=60 \mathrm{~s})$	1500	Vrms
T_{J}	Power chips operating junction temperature range	-40 to 150	${ }^{\circ} \mathrm{C}$
T_{C}	Module operation case temperature range	-40 to 125	${ }^{\circ} \mathrm{C}$

2.1 Thermal data

Table 5. Thermal data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{c})}$	Thermal resistance junction-case single MOSFET	1.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$

3 Electrical characteristics

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

$3.1 \quad$ Inverter part

Table 6. Static

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
Idss	Zero gate voltage drain current	$\mathrm{V}_{\mathrm{DS}}=600 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\text {boot }}=15 \mathrm{~V}$			100	$\mu \mathrm{A}$
$V_{\text {(BR)DSS }}$	Drain-source breakdown voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {boot }}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}^{(1)}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \end{aligned}$	600			V
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Static drain-source turn-on resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {boot }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}{ }^{(1)}=0 \text { to } 5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A} \end{aligned}$		0.13		Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {boot }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{(1)}}=0 \text { to } 5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=15 \mathrm{~A} \end{aligned}$		0.15	0.17	
$V_{\text {SD }}$	Drain-source diode forward voltage	$\mathrm{V}_{\mathrm{IN}}{ }^{(1)}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=15 \mathrm{~A}$		0.98	1.36	V

1. Applied among HINx,LINx and GND for $x=U, V, W$.

Table 7. Inductive load switching time and energy

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {on }}{ }^{(1)}$	Turn-on time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=300 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{boot}}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}^{(2)}=0 \text { to } 5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=15 \mathrm{~A} \end{aligned}$	-	690	-	ns
$\mathrm{t}_{\mathrm{c}(\mathrm{on})^{(1)}}$	Cross-over time on		-	210	-	
$\mathrm{t}_{\text {off }}{ }^{(1)}$	Turn-off time		-	1100	-	
$\mathrm{t}_{\mathrm{c} \text { (fff) }}{ }^{(1)}$	Cross-over time off		-	77	-	
t_{rr}	Reverse recovery time		-	230	-	
$E_{\text {on }}$	Turn-on switching energy		-	750	-	
$\mathrm{E}_{\text {off }}$	Turn-off switching energy		-	115	-	$\mu \mathrm{J}$
$\mathrm{E}_{\text {rr }}$	Reverse recovery energy		-	14	-	

1. $t_{\text {on }}$ and $t_{\text {off }}$ include the propagation delay time of the internal drive. $t_{C(o n)}$ and $t_{C_{\text {(off) }}}$ are the switching times of the MOSFET itself under the internally given gate driving condition.
2. Applied among HINx, LINx and GND for $x=U, V, W$.

Figure 2. Switching time test circuit

GADG240420171446IG

Figure 3. Switching time definition

(a) turn-on

(b) turn-off

AM09223V2

3.2 Control/protection parts

Table 8. High- and low-side drivers

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {il }}$	Low logic level voltage				0.8	V
$\mathrm{V}_{\text {ih }}$	High logic level voltage		2			V
$\mathrm{I}_{\text {INh }}$	IN logic "1" input bias current	$1 \mathrm{~N}_{\mathrm{x}}=15 \mathrm{~V}$	80	150	200	$\mu \mathrm{A}$
$\mathrm{l}_{\mathrm{IN} \mid}$	IN logic " 0 " input bias current	$1 \mathrm{~N}_{\mathrm{x}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
High-side						
$\mathrm{V}_{\text {CC_hys }}$	$V_{\text {CC }}$ UV hysteresis		1.2	1.4	1.7	V
V $\mathrm{CCH}_{\text {_ }}$ th(on)	$\mathrm{V}_{\mathrm{CCH}}$ UV turn-on threshold		11	11.5	12	V
$\mathrm{V}_{\text {CCH_th(off) }}$	$\mathrm{V}_{\mathrm{CCH}}$ UV turn-off threshold		9.6	10.1	10.6	V
$V_{\text {BS_hys }}$	$\mathrm{V}_{\text {BS }}$ UV hysteresis		0.5	1	1.6	V
$V_{\text {BS_th(on) }}$	$\mathrm{V}_{\text {BS }}$ UV turn-on threshold		10.1	11	11.9	V
$V_{\text {BS_th(off) }}$	$\mathrm{V}_{\text {BS }}$ UV turn-off threshold		9.1	10	10.9	V
$\mathrm{I}_{\text {QBSU }}$	Under voltage V_{BS} quiescent current	$\mathrm{V}_{\mathrm{BS}}=9 \mathrm{~V}, \mathrm{HINx}^{(1)}=5 \mathrm{~V}$		55	75	$\mu \mathrm{A}$
$I_{\text {QBS }}$	$\mathrm{V}_{\text {BS }}$ quiescent current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{HINx}^{(1)}=5 \mathrm{~V}$		125	170	$\mu \mathrm{A}$
$\mathrm{I}_{\text {qccu }}$	Under voltage quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{HINx}^{(1)}=0 \mathrm{~V}$		190	250	$\mu \mathrm{A}$
$\mathrm{I}_{\text {qcc }}$	Quiescent current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{HINx}^{(1)}=0 \mathrm{~V}$		560	730	$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	BS driver ON resistance			150		Ω
Low-side						
$\mathrm{V}_{\text {CC_hys }}$	$V_{\text {CC }}$ UV hysteresis		1.1	1.4	1.6	V
V CCL_{-}th(on)	$\mathrm{V}_{\text {CCL }}$ UV turn-on threshold		10.4	11.6	12.4	V
$\mathrm{V}_{\text {CCL_th(off) }}$	$\mathrm{V}_{\text {CCL }}$ UV turn-off threshold		9.0	10.3	11	V
$\mathrm{I}_{\mathrm{qccu}}$	Under voltage quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \overline{\mathrm{SD}}$ pulled to 5 V through $\mathrm{R}_{\mathrm{SD}}=10 \mathrm{k} \Omega$, $\mathrm{CIN}=\operatorname{LIN} x^{(1)}=0 \mathrm{~V}$		600	800	$\mu \mathrm{A}$
$\mathrm{I}_{\text {qcc }}$	Quiescent current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \overline{\mathrm{SD}}=5 \mathrm{~V}, \\ & \mathrm{CIN}=\mathrm{LINx}{ }^{(1)}=0 \mathrm{~V} \end{aligned}$		700	900	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SSD }}$	Smart $\overline{\mathrm{SD}}$ unlatch threshold		0.5	0.6	0.75	V
ISDh	$\overline{\mathrm{SD}}$ logic "1" input bias current	$\overline{S D}=5 \mathrm{~V}$	25	50	70	$\mu \mathrm{A}$
$I_{\text {SDI }}$	$\overline{\mathrm{SD}}$ logic "0" input bias current	$\overline{\mathrm{SD}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$

1. Applied among HINx, LINx and GND for $x=U, V, W$.

Table 9. Temperature sensor output

Symbol	Parameter	Test condition	Min.	Typ.	Max.
$\mathrm{V}_{\text {TSO }}$	Temperature sensor output voltage	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	0.974	1.16	1.345
$\mathrm{I}_{\text {TSO_SNK }}$	Temperature sensor sink current capability		V		
$\mathrm{I}_{\text {TSO_SRC }}$	Temperature sensor source current capability		0.1		

Table 10. Sense comparator ($\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$, unless otherwise is specified)

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
$\mathrm{I}_{\text {CIN }}$	CIN input bias current	$\mathrm{V}_{\text {CIN }}=1 \mathrm{~V}$	-0.2		0.2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {ref }}$	Internal reference voltage		460	510	560	mV
$V_{O D}$	Open-drain low level output voltage	$\mathrm{l}_{\text {od }}=5 \mathrm{~mA}$			500	mV
${ }_{\text {t }}^{\text {cIN_S }}$ S	$\mathrm{C}_{\text {IN }}$ comparator delay to $\overline{\mathrm{SD}}$	$\overline{\mathrm{SD}}$ pulled to 5 V through $\mathrm{R}_{\mathrm{SD}}=10 \mathrm{k} \Omega$; measured applying a voltage step $0-1 \mathrm{~V}$ to pin CIN; 50% CIN to $90 \% \overline{\text { SD }}$	240	320	410	ns
$\mathrm{SR}_{\text {SD }}$	$\overline{\text { SD fall slew rate }}$	$\overline{\mathrm{SD}}$ pulled to 5 V through $\mathrm{R}_{\mathrm{SD}}=10 \mathrm{k} \Omega$; $\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$ through $\overline{\mathrm{SD}}$ and ground; 90% SD to 10% SD		25		V/us

The comparator stays enabled even if V_{CC} is in the UVLO condition but higher than 4 V .

The device integrates an open-drain output connected to the $\overline{S D}$ pin. As soon as a fault occurs, the open-drain is activated and the LVGx outputs are forced low. Two types of fault can be identified:

- Overcurrent (OC) sensed by the internal comparator (see more detail in Section 4.1 Smart shutdown function);
- Undervoltage on supply voltage (V_{CC})

Each fault enables the SD open drain for a different time, as described in the following table.

Table 11. Fault timing

Symbol	Parameter	Event time ${ }^{(1)}$	SD open-drain enable time result ${ }^{(1)(2)}$
OC	Over-current event	$\leq 24 \mu \mathrm{~s}$	$24 \mu \mathrm{~s}$
	Under-voltage lockout event	$>24 \mu \mathrm{~s}$	OC time
		$\leq 70 \mu \mathrm{~s}$	$70 \mu \mathrm{~s}$

1. Typical value $\left(-40^{\circ} \mathrm{C} \leq T_{J} \leq+125^{\circ} \mathrm{C}\right)$.
2. Without contribution of the RC network on SD.

Actually, the device remains in a fault condition ($\overline{\mathrm{SD}}$ at low logic level and LVGx outputs disabled) for a time also depending on the RC network connected to the $\overline{S D}$ pin. The network generates a time contribution that is added to the internal value.

Figure 4. Overcurrent timing (without contribution of the RC network on $\overline{\mathrm{SD}}$)

Figure 5. UVLO timing (without contribution of the RC network on $\overline{\text { SD }}$)

4.1 Smart shutdown function

The device integrates a comparator committed to the fault sensing function. The comparator input can be connected to an external shunt resistor in order to implement a simple overcurrent detection function.
The output signal of the comparator is fed to an integrated MOSFET with the open drain output available on the $\overline{\mathrm{SD}}$ input. When the comparator triggers, the device is set in shutdown state and its outputs are all set to low level.

Figure 6. Smart shutdown timing waveforms in case of overcurrent event

$\mathrm{R}_{\mathrm{ON} _\mathrm{OD}}=\mathrm{V}_{\mathrm{OD}} / 5 \mathrm{~mA}$, see Table 10. Sense comparator $\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right.$, unless otherwise is specified); $R_{\text {PD_SD }}$ (typ.) $=5 \mathrm{~V} / \mathrm{I}_{\text {SDh }}$

In common overcurrent protection designs, the comparator output is usually connected to the $\overline{\mathrm{SD}}$ input and an RC network is connected to this $\overline{\mathrm{SD}}$ line in order to provide a mono-stable circuit which implements a protection time that follows the fault condition.
As opposed to common fault detection systems, the device smart shutdown architecture allows the immediate turn-off of output gates driver in case of fault, by minimizing the propagation delay between the fault detection event and the actual switching off of the outputs. In fact, the time delay between the fault and the turning off of the outputs is no longer dependent on the RC value of the external network connected to the pin.
In the smart shutdown circuitry, the fault signal has a preferential path which directly switches off the outputs after the comparator triggering.
At the same time, the internal logic turns on the open-drain output and holds it on until the $\overline{\mathrm{SD}}$ voltage goes below the $\mathrm{V}_{\mathrm{SSD}}$ threshold and the t_{oc} time is elapsed.
The driver outputs restart following the input pins as soon as the voltage at the $\overline{\mathrm{SD}}$ pin reaches the higher threshold of the $\overline{\mathrm{SD}}$ logic input.
The smart shutdown system provides the possibility to increase the time constant of the external RC network (i.e., the disable time after the fault event) up to very high values without increasing the delay time of the protection.

5 Temperature monitoring solutions

5.1 TSO output

The device integrates a temperature sensor. A voltage proportional to the die temperature is available on the TSO pin. When this function is not used, the pin can be left floating.

Figure 7. $\mathbf{V}_{\text {TSo }}$ output characteristics vs LVIC temperature

5.2 NTC thermistor

Table 12. NTC thermistor

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
R_{25}	Resistance	$\mathrm{T}=25^{\circ} \mathrm{C}$		85		$k \Omega$
R_{125}	Resistance	$\mathrm{T}=125^{\circ} \mathrm{C}$		2.6		k Ω
B	B-constant	$\mathrm{T}=25$ to $100{ }^{\circ} \mathrm{C}$		4092		K
T	Operating temperature range		-40		125	${ }^{\circ} \mathrm{C}$

Figure 8. NTC resistance vs temperature

Figure 9. NTC resistance vs temperature - zoom

6 Application circuit example

Figure 10. Application circuit example

GADG260420170807IG

Application designers are free to use a different scheme according to the device specifications.

6.1 Guidelines

1. Input signals HIN, LIN are active-high logic. A $100 \mathrm{k} \Omega$ (typ.) pull-down resistor is built-in for each input pin. To prevent input signal oscillations, the wiring of each input should be as short as possible and the use of $R C$ filters $\left(R_{1}, C_{1}\right)$ on each input signal is suggested. The filters should be with a time constant of about 100 ns and placed as close as possible to the IPM input pins.
2. The use of a bypass capacitor $\mathrm{C}_{\mathrm{VCC}}$ (aluminum or tantalum) can reduce the transient circuit demand on the power supply. Besides, to reduce any high-frequency switching noise distributed on the power lines, a decoupling capacitor C_{2} (100 to 220 nF , with low ESR and low ESL) should be placed as close as possible to each V_{cc} pin and in parallel with the bypass capacitor.
3. The use of an $R C$ filter ($R_{S F}, C_{S F}$) prevents protection circuit malfunctions. The time constant ($R_{S F} \times C_{S F}$) should be set to 1μ s and the filter must be placed as close as possible to the CIN pin.
4. The $\overline{\mathrm{SD}}$ is an input/output pin (open-drain type if it is used as output). It should be pulled up to a power supply (i.e., MCU bias at $3.3 / 5 \mathrm{~V}$) by a resistor value, which can keep the $\mathrm{I}_{\text {od }}$ no higher than $5 \mathrm{~mA}\left(\mathrm{~V}_{\mathrm{OD}} \leq\right.$ 500 mV when open-drain MOSFET is ON). The filter on $\overline{\mathrm{SD}}$ should be sized to get a desired re-starting time after a fault event and placed as close as possible to the $\overline{\mathrm{SD}}$ pin.
5. A decoupling capacitor $\mathrm{C}_{\text {Tso }}$ between 1 nF and 10 nF can be used to increase the noise immunity of the TSO thermal sensor; a similar decoupling capacitor $\mathrm{C}_{\text {OT }}$ (between 10 nF and 100 nF) can be implemented if the NTC thermistor is available and used. In both cases, their effectiveness is improved if these capacitors are placed close to the MCU.
6. The decoupling capacitor C_{3} (100 to 220 nF with low ESR and low ESL) in parallel with each $\mathrm{C}_{\text {boot }}$ filters high-frequency disturbances. Both $\mathrm{C}_{\text {boot }}$ and C_{3} (if present) should be placed as close as possible to the $\mathrm{U}, \mathrm{V}, \mathrm{W}$ and $\mathrm{V}_{\text {boot }}$ pins. Bootstrap negative electrodes should be connected to the $\mathrm{U}, \mathrm{V}, \mathrm{W}$ terminals directly and separated from the main output wires.
7. To prevent overvoltage on the V_{CC} pin, a Zener diode (Dz 1) can be used. Similarly on the $\mathrm{V}_{\text {boot }}$ pin, a Zener diode (Dz2) can be placed in parallel with each $\mathrm{C}_{\text {boot }}$.
8. The use of the decoupling capacitor C_{4} (100 to 220 nF , with low ESR and low ESL) in parallel with the electrolytic capacitor $\mathrm{C}_{\mathrm{Vdc}}$ prevents surge destruction. Both capacitors C_{4} and $\mathrm{C}_{V d \mathrm{c}}$ should be placed as close as possible to the IPM (C_{4} has priority over $\mathrm{C}_{\mathrm{vdc}}$).
9. By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals without an optocoupler is possible.
10. Low inductance shunt resistors should be used for phase leg current sensing.
11. In order to avoid malfunctions, the wiring on N pins, the shunt resistor and PWR_GND should be as short as possible.
12. The connection of the SGN_GND to the PWR_GND at one point only (close to the shunt resistor terminal) can reduce the impact of power ground fluctuation.

These guidelines ensure the device specifications for application designs. For further details, please refer to the relevant application note.

Table 13. Recommended operating conditions

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {PN }}$	Supply voltage	Applied among P-Nu, $\mathrm{N}_{\mathrm{V}}, \mathrm{N}_{\mathrm{w}}$		300	400	V
V_{CC}	Control supply voltage	Applied to V_{CC}-GND	13.5	15	18	V
$V_{B S}$	High-side bias voltage	Applied to $\mathrm{V}_{\text {Bоотi- }} \mathrm{OUT}_{\mathrm{i}}$ for $\mathrm{i}=\mathrm{U}, \mathrm{V}, \mathrm{W}$	13		18	V
$\mathrm{t}_{\text {dead }}$	Blanking time to prevent arm-short	For each input signal	1.5			$\mu \mathrm{s}$
$\mathrm{f}_{\text {PWm }}$	PWM input signal	$\begin{aligned} & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{C}}<100^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C} \end{aligned}$			20	kHz
T_{C}	Case operation temperature				100	${ }^{\circ} \mathrm{C}$

$7 \quad$ Electrical characteristics (curves)

Figure 11. Output characteristics

Figure 12. Diode $\mathbf{V}_{\text {SD }}$ vs drain current

Figure 13 . I_{D} vs temperature

Figure 14. EON switching energy vs drain current

Figure 15. EOfF switching energy vs drain current

Figure 16. Thermal impedance for MOSFET

8

Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

8.1 SDIP2B-26L type L package information

Figure 17. SDIP2B-26L type L package outline

Table 14. SDIP2B-26L type L package mechanical data

Ref.	Dimensions (mm)		
	Min.	Typ.	Max.
A	37.50	38.00	38.50
A1	0.97	1.22	1.47
A2	0.97	1.22	1.47
A3	34.70	35.00	35.30
c	1.45	1.50	1.55
B	23.50	24.00	24.50
B1		12.00	
B2	13.90	14.40	14.90
B3	28.90	29.40	29.90
C	3.30	3.50	3.70
C1	5.00	5.50	6.00
C2	13.50	14.00	14.50
D	28.70	29.30	29.80
D1	2.55	2.85	3.15
e	3.356	3.556	3.756
e1	1.578	1.778	1.978
e2	7.42	7.62	7.82
e3	4.88	5.08	5.28
e4	2.34	2.54	2.74
E	11.90	12.40	12.90
E1	3.45	3.75	4.05
E2		1.80	
f	0.45	0.60	0.75
f1	0.35	0.50	0.65
F	1.95	2.10	2.25
F1	0.95	1.10	1.25
R	1.55	1.575	1.60
T	0.375	0.40	0.425
V	0°		$5{ }^{\circ}$

Revision history

Table 15. Document revision history

| Date | Revision | Changes |
| :---: | :---: | :--- | :--- |
| 02-May-2017 | 1 | Initial release. |
| 10-Sep-2018 | 2 | Removed maturity status indication from cover page.
 Modified features, applications and description on cover page.
 Modified Section Inverter part, Section Thermal dataSection Static, Section Inductive load switching
 time and energy and Section Electrical characteristics (curves).
 Modified Section Package information. |
| 10-Jul-2019 | 3 | Minor text changes. |
| Updated Section Features.
 Minor text changes. | | |

Contents

1 Internal schematic and pin description 2
2 Absolute maximum ratings 4
2.1 Thermal data 4
3 Electrical characteristics 6
3.1 Inverter part 6
3.2 Control/protection parts 7
4 Fault management 10
4.1 Smart shutdown function 11
5 Temperature monitoring solutions 14
5.1 TSO output 14
5.2 NTC thermistor 14
6 Application circuit example 16
6.1 Guidelines 17
7 Electrical characteristics (curves) 18
8 Package information 19
8.1 SDIP2B-26L type L package information 19
Revision history 21

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

