STL105N4LF7AG
life.augmented

Automotive-grade N-channel $40 \mathrm{~V}, 3.0 \mathrm{~m} \Omega$ typ., 105 A STripFET ${ }^{\text {TM }}$ F7 Power MOSFET in a PowerFLAT ${ }^{\text {TM }} 5 \times 6$ package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V $_{\text {DS }}$	R$_{\text {DS(on) }}$ max.	I_{D}
STL105N4LF7AG	40 V	$4.5 \mathrm{~m} \Omega$	105 A

- AEC-Q101 qualified

- Among the lowest $\operatorname{RDS}(o n)$ on the market
- Excellent FoM (figure of merit)
- Low $\mathrm{C}_{\text {rss }} / \mathrm{C}_{\text {iss }}$ ratio for EMI immunity
- High avalanche ruggedness
- Wettable flank package

Applications

- Switching applications

Description

This N-channel Power MOSFET utilizes STripFET ${ }^{\text {TM }}$ F7 technology with an enhanced trench gate structure that results in very low on-state resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STL105N4LF7AG	$105 N 4 L F 7$	PowerFLAT $^{\text {TM }} 5 \times 6$	Tape and reel

Contents

1 Electrical ratings 3
2 Electrical characteristics 4
2.1 Electrical characteristics (curves) 6
3 Test circuits 8
4 Package information 9
4.1 PowerFLAT 5x6 WF type C package information 9
4.2 Packing information 12
5 Revision history 14

1
 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	40	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate-source voltage	± 20	V
ID_{D}	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	105	A
ID_{D}	Drain current (continuous) at $\mathrm{TC}=100^{\circ} \mathrm{C}$	74	A
$\mathrm{I}_{\mathrm{DM}}{ }^{(1)}$	Drain current (pulsed)	420	A
$\mathrm{P}_{\text {TOT }}$	Total dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	94	W
$\mathrm{~T}_{\mathrm{j}}$	Operating junction temperature range	-55 to 175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range		

Notes:

${ }^{(1)}$ Pulse width limited by safe operating area.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
$R_{\mathrm{th} j \text {-case }}$	Thermal resistance junction-case	1.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th} \mathrm{j} \text {-pcb }}{ }^{(1)}$	Thermal resistance junction-pcb	32	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:

${ }^{(1)}$ When mounted on FR-4 board of 1 inch$^{2}, 20 z \mathrm{Cu}, \mathrm{t}<10 \mathrm{~s}$.

2 Electrical characteristics

($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Table 4: On/Off states

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {(BR) DSS }}$	Drain-source breakdown voltage	$\mathrm{l}=1 \mathrm{~mA}, \mathrm{~V} \mathrm{GS}=0 \mathrm{~V}$	40			V
Idss	Zero gate voltage drain current	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=40 \mathrm{~V} \end{aligned}$			10	$\mu \mathrm{A}$
Igss	Gate-body leakage current	V GS $= \pm 20 \mathrm{~V}, \mathrm{~V}$ DS $=0 \mathrm{~V}$			100	nA
$\mathrm{VGSS}_{(\text {(th })}$	Gate threshold voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{ID}=250 \mu \mathrm{~A}$	1.5		2.5	V
Rds(on)	Static drain-source on-resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=11.5 \mathrm{~A}$		3.0	4.5	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{ID}=11.5 \mathrm{~A}$		4.0	8.0	$\mathrm{m} \Omega$

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
Ciss	Input capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	-	1500	-	pF
Coss	Output capacitance		-	400	-	pF
Crss	Reverse transfer capacitance		-	50	-	pF
Q_{g}	Total gate charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=23 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \text { to } 10 \mathrm{~V} \end{aligned}$ (see Figure 14: "Test circuit for gate charge behavior")	-	23.3	-	nC
Qgs	Gate-source charge		-	5.5	-	nC
Q_{gd}	Gate-drain charge		-	3.8	-	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{td}_{\text {d}}(\mathrm{on})$	Turn-on delay time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=32 \mathrm{~V}, \mathrm{ID}=11.5 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$ (see Figure 13: "Test circuit for resistive load switching times" and Figure 18: "Switching time waveform")	-	10	-	ns
tr	Rise time		-	6.5	-	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off delay time		-	43	-	ns
$\dagger_{\text {t }}$	Fall time		-	15	-	ns

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
ISD	Source-drain current		-		105	A
$\mathrm{ISDM}^{(1)}$	Source-drain current (pulsed)		-		420	A
$\mathrm{VSD}^{(2)}$	Source-drain current	$\mathrm{ISD}=23 \mathrm{~A}, \mathrm{VGS}=0 \mathrm{~V}$	-		1.3	V
$\mathrm{trr}^{\text {r }}$	Reverse recovery time	$\begin{aligned} & \text { ISD }=23 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{DD}}=32 \mathrm{~V} \end{aligned}$ (see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	32		ns
Qrr	Reverse recovery charge		-	27		nC
IRRM	Reverse recovery current		-	1.7		A

Notes:

${ }^{(1)}$ Pulse width limited by safe operating area.
${ }^{(2)}$ Pulsed: pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 4: Output characteristics

Figure 5: Transfer characteristics

Figure 6: Gate charge vs gate-source voltage

Figure 7: Static drain-source on-resistance

Figure 10: Normalized on-resistance vs temperature

Figure 11: Normalized $\mathbf{V}_{(\mathrm{BR}) \mathrm{DSs}}$ vs temperature

Figure 12: Source-drain diode forward characteristics

3 Test circuits

Figure 15: Test circuit for inductive load switching and diode recovery times

Figure 16: Unclamped inductive load test circuit

Figure 17: Unclamped inductive waveform

Figure 18: Switching time waveform

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

4.1 PowerFLAT 5x6 WF type C package information

Figure 19: PowerFLAT ${ }^{\text {TM }} 5 \times 6$ WF type C package outline

Table 8: PowerFLAT ${ }^{\text {TM }} 5 \times 6$ WF type C mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
C	5.80	6.00	6.10
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.00	5.10
D5	0.25	0.40	0.55
D6	0.15	0.30	0.45
e		1.27	
E	6.20	6.40	6.60
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.20	0.325	0.45
E7	0.85	1.00	1.15
E9	4.00	4.20	4.40
E10	3.55	3.70	3.85
K	1.05		1.35
L	0.90	1.00	1.10
L1	0.175	0.275	0.375
θ	0°		12°

Figure 20: PowerFLAT ${ }^{\text {TM }} 5 \times 6$ recommended footprint (dimensions are in mm)

4.2 Packing information

Figure 21: PowerFLAT ${ }^{\text {TM }} 5 \times 6$ WF tape (dimensions are in mm)

Figure 22: PowerFLAT ${ }^{\text {TM }} 5 \times 6$ package orientation in carrier tape

Figure 23: PowerFLAT ${ }^{\text {TM }} 5 \times 6$ reel (dimensions are in mm)

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
02-May-2016	1	First release.
13-Sep-2016	2	Updated Section 5: "Electrical characteristics".
18-Dec-2017	3	Datasheet promoted from preliminary data to production data. Modified Table 4: "On/Off states", Table 5: "Dynamic", Table 6: "Switching times" and Table 7: "Source-drain diode". Minor text changes.
18-Jan-2018	4	Updated Figure 2: "Safe operating area" and Figure 3: "Thermal impedance".

STL105N4LF7AG

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D
TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C
IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI
DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384
NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956
NTE2911 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B

