

STL33N60DM2

N-channel 600 V, 0.115 Ω typ., 21 A MDmesh™ DM2 Power MOSFET in a PowerFLAT™ 8x8 HV package

Datasheet - production data

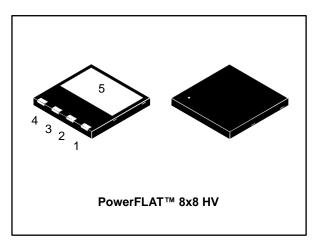
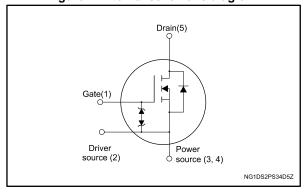



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max	I _D
STL33N60DM2	650 V	0.140 Ω	21 A

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmesh $^{\text{TM}}$ DM2 fast recovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low $R_{\text{DS(on)}}$, rendering it suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

Order code	Marking	Package	Packaging
STL33N60DM2	33N60DM2	PowerFLAT™ 8x8 HV	Tape and reel

Contents STL33N60DM2

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e mechanical data	9
	4.1	PowerFLAT™ 8x8 HV package mechanical data	10
	4.2	PowerFLAT™ 8x8 HV packing information	12
5	Revisio	n history	14

STL33N60DM2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	± 25	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	21	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	15	Α
I _{DM} ⁽¹⁾ , ⁽²⁾	Drain current (pulsed)	84	Α
P _{TOT} ⁽¹⁾	Total dissipation at T _C = 25 °C	150	W
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by $T_{\rm j}$ max)	4.5	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	570	mJ
dv/dt (3)	Peak diode recovery voltage slope	50	V/ns
dv/dt (4)	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature range	55 to 150	°C
Tj	Operating junction temperature range - 55 to 150		

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.83	°C/W
R _{thj-amb} (1)	Thermal resistance junction-ambient max	45	°C/W

Notes:

 $[\]ensuremath{^{(1)}}$ The value is rated according to $R_{thj\text{-case}}$ and limited by package.

 $[\]ensuremath{^{(2)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(3)}}I_{SD} \leq 21$ A, di/dt ≤ 900 A/µs, $V_{DS(peak)} < V_{(BR)DSS}, \ V_{DD} = 400$ V.

 $^{^{(4)}}V_{DS} \le 480 \text{ V}.$

 $^{^{(1)}\!}W$ hen mounted on FR-4 board of inch², 2oz Cu.

Electrical characteristics STL33N60DM2

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0$, $I_D = 1$ mA	600			٧
	Zoro goto voltago	$V_{GS} = 0, V_{DS} = 600 \text{ V}$			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0,$ $V_{DS} = 600 \text{ V}, T_{C} = 125 \text{ °C}^{(1)}$			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0, V_{GS} = \pm 25 \text{ V}$			±10	μΑ
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 10.5 A		0.115	0.140	Ω

Notes:

Table 5: Dynamic

Tuble of Dynamic						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	1870	-	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	-	87	-	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0$	-	2	-	pF
Coss eq. (1)	Equivalent output capacitance	$V_{DS} = 0$ to 480 V, $V_{GS} = 0$	-	157	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	-	4.5	-	Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 21 A	-	43	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	9.8	-	nC
Q _{gd}	Gate-drain charge	(see Figure 15: "Gate charge test circuit")	-	21.4	-	nC

Notes:

 $^{^{(1)}}$ Defined by design, not subject to production test.

 $^{^{(1)}}$ Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS-

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 10.5 \text{ A}$	-	17	-	ns
t _r	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	-	8	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 14: "Switching times test circuit for resistive	-	62	-	ns
t _f	Fall time	load")	-	9	-	ns

Table 7: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} (1)	Source-drain current		-		21	Α
I _{SDM} (1)(2)	Source-drain current (pulsed)		-		84	Α
V _{SD} ⁽³⁾	Forward on voltage	I _{SD} = 21 A, V _{GS} = 0	ı		1.6	V
t _{rr}	Reverse recovery time	04.4 17/19 400.4/	ı	120		ns
Q _{rr}	Reverse recovery charge	I _{SD} = 21 A, di/dt = 100 A/μs V _{DD} = 100 V (see Figure 16: " Test circuit for inductive load switching and diode recovery times")		0.53		μC
I _{RRM}	Reverse recovery current			8.8		Α
t _{rr}	Reverse recovery time	I _{SD} = 21 A, di/dt = 100 A/μs	ı	316		ns
Q _{rr}	Reverse recovery charge	V_{DD} = 100 V, T_j = 150 °C (see <i>Figure 16: " Test circuit for</i>	1	2.85		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")		18		Α

Notes

Table 8: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)GSO}$	Gate-source breakdown voltage	$I_{GS} = \pm 250 \mu\text{A}, I_{D} = 0 \text{A}$	±30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

 $[\]ensuremath{^{(1)}}\xspace$ The value is rated according to $R_{thj\text{-}case}$ and limited by package.

⁽²⁾Pulse width limited by safe operating area

 $^{^{(3)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.2 Electrical characteristics (curves)

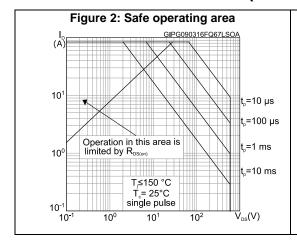


Figure 3: Thermal impedance

Zth PowerFIAT 8x8 HV

0.2

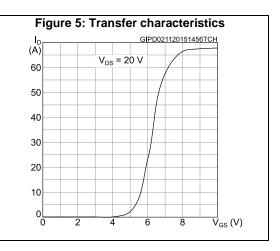
0.1

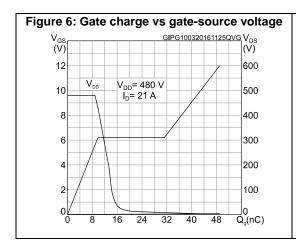
0.05

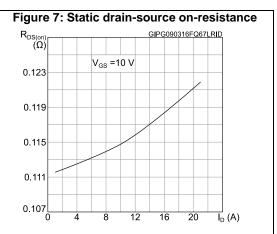
Zth = K*Rth J-c

δ = ty/T

Single pulse


10²


10⁴


10³

10²

tp(s)

STL33N60DM2 Electrical characteristics

Figure 8: Capacitance variations

C (pF)

10 4

10 3

C (pF)

C (pF)

10 4

10 1

C (pF)

10 1

10 1

C (pF)

10 1

C (pF)

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

10 1

Figure 10: Normalized on-resistance vs temperature

R_{DS(on)} GIPD021120151654RON
(norm.)

2.2

1.8

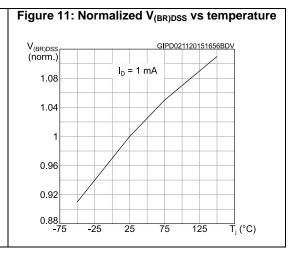
1.4

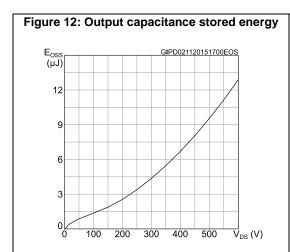
1

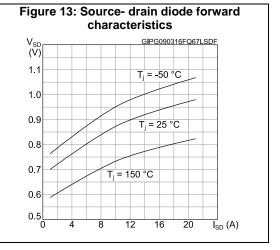
0.6

0.2

-75

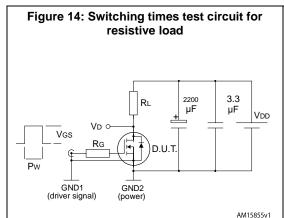

-25

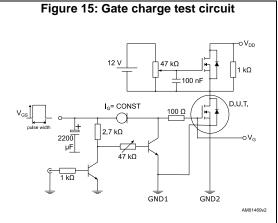

25

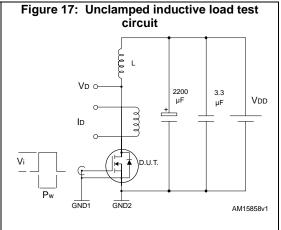

75

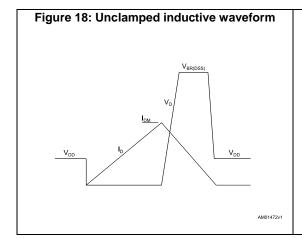
125

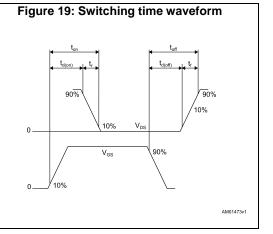
T_j (°C)








Test circuits STL33N60DM2


3 Test circuits

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 PowerFLAT™ 8x8 HV package mechanical data

Figure 20: PowerFLAT™ 8x8 HV package outline

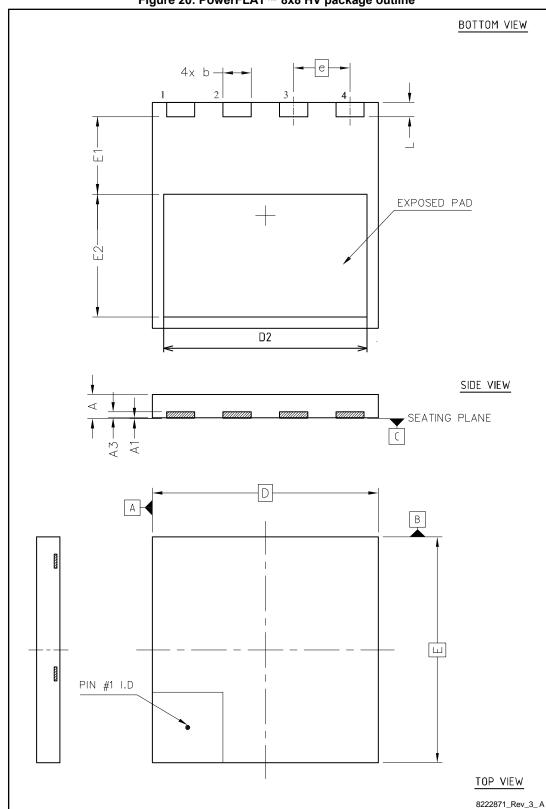
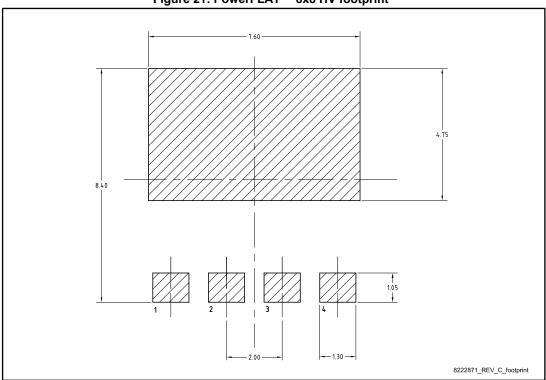



Table 9: PowerFLAT™ 8x8 HV mechanical data

Dim.			
Dilli.	Min.	Тур.	Max.
А	0.75	0.85	0.95
A1	0.00		0.05
A3	0.10	0.20	0.30
b	0.90	1.00	1.10
D	7.90	8.00	8.10
E	7.90	8.00	8.10
D2	7.10	7.20	7.30
E1	2.65	2.75	2.85
E2	4.25	4.35	4.45
е		2.00	
L	0.40	0.50	0.60

Figure 21: PowerFLAT™ 8x8 HV footprint

All dimensions are in millimeters.

4.2 PowerFLAT™ 8x8 HV packing information

Figure 22: PowerFLAT™ 8x8 HV tape

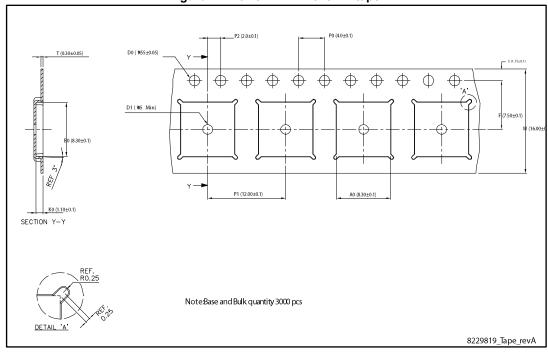
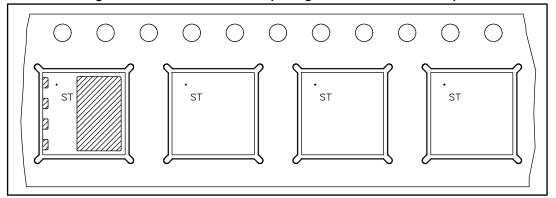



Figure 23: PowerFLAT™ 8x8 HV package orientation in carrier tape

12/15 DocID026781 Rev 2

8229819_Reel_revA

SEE DETAIL C (detail c #330.0±₽₩

Figure 24: PowerFLAT™ 8x8 HV reel

Revision history STL33N60DM2

5 Revision history

14/15

Table 10: Document revision history

Date	Revision	Changes
08-Aug-2014	1	First release.
		Updated title and internal schematic in cover page.
		Document status promoted from preliminary data to production data.
09-Mar-2016	2	Modified: Table 2: "Absolute maximum ratings", Table 4: "On /off states", Table 5: "Dynamic", Table 6: "Switching times" and Table 7: "Source drain diode"
		Added: Section 4.1: "Electrical characteristics (curves)"
		Updated: Section 6.1: "PowerFLAT™ 8x8 HV package mechanical data"
		Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C

IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI

DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384

NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956

NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF