STL3NK40

N-channel 400 V, 4.5 Ω typ., 0.43 A, SuperMESH™ Power MOSFET in a PowerFLAT™ 5x5 package

Datasheet - production data

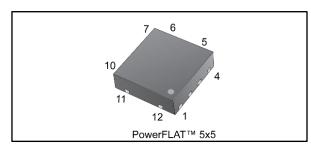
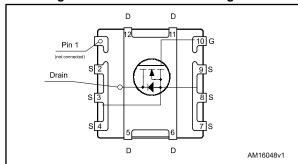



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD	Ртот
STL3NK40	400 V	5.5 Ω	0.43 A	2.5 W

- Extremely high dv/dt capability
- 100% avalanche tested
- Gate charge minimized

Applications

Switching applications

Description

This high voltage device is an N-channel Power MOSFET developed using the SuperMESH™ technology by STMicroelectronics, an optimization of the well-established PowerMESH™. In addition to a significant reduction in on-resistance, this device is designed to ensure a high level of dv/dt capability for the most demanding applications.

Table 1: Device summary

Order code	Marking	Package	Packing	
STL3NK40	3NK40	PowerFLAT™ 5x5	Tape and reel	

Contents STL3NK40

Contents

1	Electrical ratings3		
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	8
4	Packag	e information	9
	4.1	PowerFLAT™ 5x5 package information	10
5	Revisio	n history	12

STL3NK40 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	400	V
V_{DGR}	Drain-gate voltage (R _{GS} = 20 kΩ)	400	V
V _G s	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _{pcb} = 25 °C	0.43	Α
I _D ('')	Drain current (continuous) at T _{pcb} = 100 °C	0.27	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	1.72	Α
P _{TOT} ⁽¹⁾	Total dissipation at T _{pcb} = 25 °C	lissipation at $T_{pcb} = 25 ^{\circ}\text{C}$ 2.5	
dv/dt (3)	Peak diode recovery voltage slope	4.5 V/r	
Tj	Operating junction temperature range	55 to 450	
T _{stg}	Storage temperature range	- 55 to 150	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	°C/W

Notes:

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or non-repetitive (pulse width limited by T _{jmax.})	0.43	А
Eas	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	60	mJ

 $[\]ensuremath{^{(1)}}\xspace$ When mounted on FR-4 board of 1 inch², 2 oz Cu (t < 100 s).

⁽²⁾Pulse width limited by safe operating area.

 $^{^{(3)}}I_{SD} \leq$ 0.43 A, di/dt \leq 200 A/µs; V_{DD}< 320 V.

 $^{^{(1)}}$ When mounted on 1 inch² FR-4 board, 2 oz Cu (t < 100 s).

Electrical characteristics STL3NK40

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Table 5: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	400			V
		V _{GS} = 0 V, V _{DS} = 400 V			1	μΑ
I _{DSS}	Zero-gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 400 \text{ V}$ $T_{C} = 125 \text{ °C}^{(1)}$			50	μA
I _{GSS}	Gate body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \mu A$	0.8	1.6	2	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 0.22 \text{ A}$		4.5	5.5	Ω

Notes:

Table 6: Dynamic

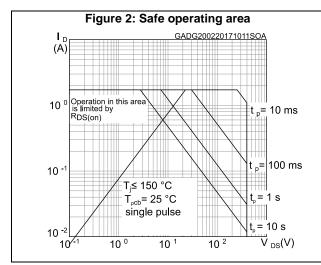
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		ı	128	200	pF
Coss	Output capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0 \text{ V}$	ı	16	30	pF
Crss	Reverse transfer capacitance	V 00 = V V	ı	4	6	pF
Rg	Gate input resistance	f = 1 MHz gate DC bias = 0 test signal level = 20 mV opendrain	1	12		pF
Q_g	Total gate charge	$V_{DD} = 320 \text{ V}, I_D = 1.4 \text{ A}$	-	8.7	13	nC
Q_{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	0.9	-	nC
Q _{gd}	Gate-drain charge	(see Figure 13: "Test circuit for gate charge behavior")	-	3.8	-	nC

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 200 V, I_{D} = 0.7 A,	-	3	ı	ns
t _r	Rise time	$R_G = 4.7 \Omega$	-	4	-	ns
t _{d(off)}	Turn-off delay time	V _{GS} = 10 V (see <i>Figure 12: "Test</i>	-	18	-	ns
t _f	Fall time	circuit for resistive load switching times" and Figure 17: "Switching time waveform")	-	16	•	ns

⁽¹⁾Defined by design, not subject to production test.

Table 8: Source-drain diode

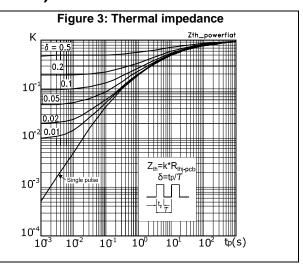
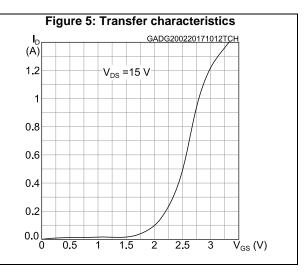
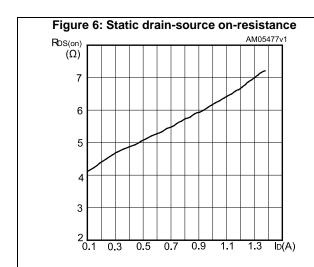
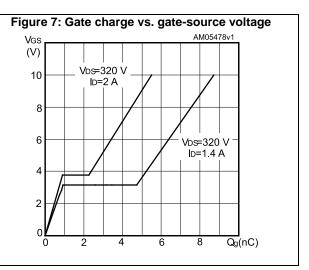

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		ı		0.43	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		1.72	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 0.43 A, V _{GS} = 0 V	-		1.2	V
t _{rr}	Reverse recovery time	I _{SD} = 1.4 A, di/dt = 100 A/μs,V _{DD} = 20 V (see Figure 14: "Test circuit for inductive load switching and diode	-	166		ns
Qrr	Reverse recovery charge		-	300		nC
I _{RRM}	Reverse recovery current	recovery times")		3.6		Α
t _{rr}	Reverse recovery time	$I_{SD} = 1.4 \text{ A}$, $di/dt = 100 \text{ A/µs V}_{DD} = 20 \text{ V}$, $T_j = 150 ^{\circ}\text{C}$ (see Figure 14: "Test circuit for inductive load switching and diode recovery times")		176		ns
Qrr	Reverse recovery charge			340		nC
I _{RRM}	Reverse recovery current			3.8		Α

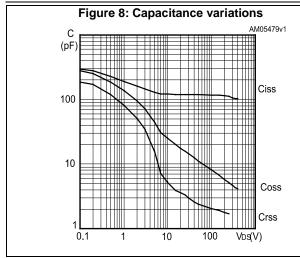
Notes:

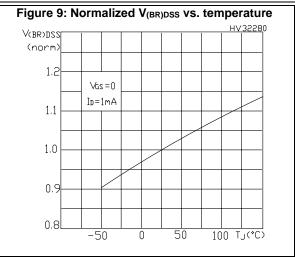
 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width limited by safe operating area.

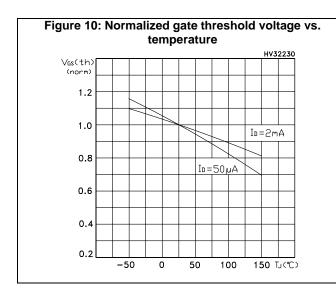
 $^{^{(2)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s,}$ duty cycle 1.5%.

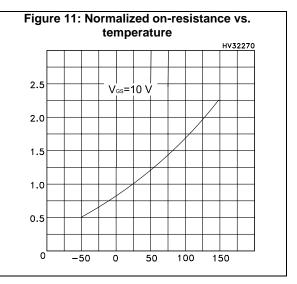
2.1 Electrical characteristics (curves)


Figure 4: Output characteristics


| Comparison of the characteristics | Comparison of the characterist





Test circuits STL3NK40

3 Test circuits

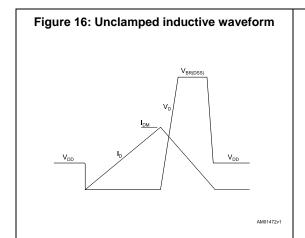
Figure 12: Test circuit for resistive load switching times

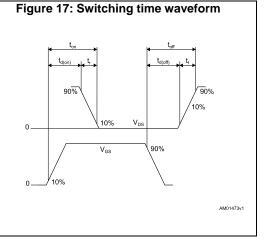
Figure 13: Test circuit for gate charge behavior

VGS

Pulse width

1 C CONST


100 0


PL

AM01469v10

Figure 14: Test circuit for inductive load switching and diode recovery times

Figure 15: Unclamped inductive load test circuit

577

STL3NK40 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 PowerFLAT™ 5x5 package information

Figure 18: PowerFLAT™ 5x5 package outline

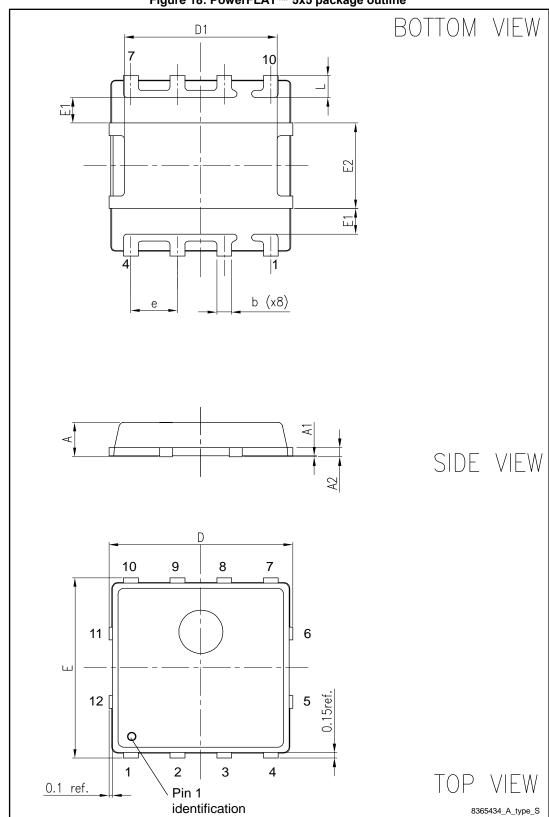
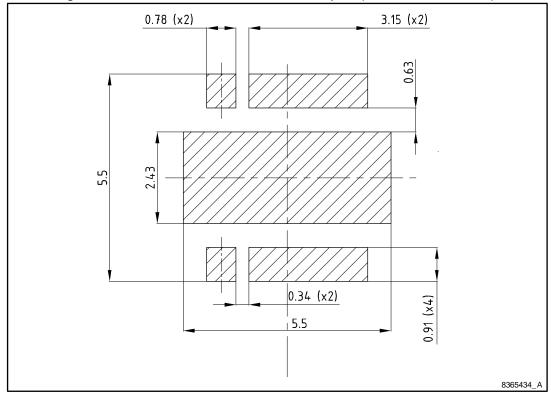



Table 9: PowerFLAT 5x5 package mechanical data

Dim.		mm	
Diiii.	Min.	Тур.	Max.
Α	0.80		1.0
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
D		5.00	
D1	4.05		4.25
Е		5.00	
E1	0.64		0.79
E2	2.25		2.45
е		1.27	
L	0.45		0.75

Figure 19: PowerFLAT™ 5x5 recommended footprint (dimensions are in mm)

Revision history STL3NK40

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
18-Sep-2009	1	First release.
29-Aug-2013	2	Updated: Section 4: Package mechanical data Minor text changes
20-Feb-2017	3	Removed PowerFLAT™ 5x5 type C package information and cover image. Updated <i>Table 6: "Dynamic"</i> and <i>Table 8: "Source-drain diode"</i> . Updated <i>Section 2.1: "Electrical characteristics (curves)"</i> . Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7