

STL45N10F7AG

Automotive-grade N-channel 100 V, 20 mΩ typ., 18 A, STripFET™ F7 Power MOSFET in a PowerFLAT™ 5x6 package

Datasheet - production data

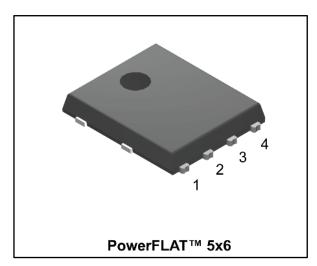
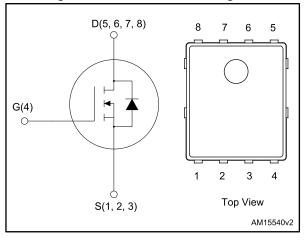



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	ID	Ртот
STL45N10F7AG	100 V	24 mΩ	18 A	72 W

AEC-Q101 qualified

- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness
- Wettable flank package

Applications

• Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STL45N10F7AG	45N10F7	PowerFLAT™ 5x6	Tape and reel

Contents STL45N10F7AG

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT™ 5x6 WF type R package information	9
	4.2	PowerFLAT™ 5x6 packing information	12
5	Revisio	n history	14

STL45N10F7AG Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage	100	V	
V _{GS}	Gate-source voltage	±20	V	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	18	Α	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	18	Α	
I _{DM} ⁽²⁾	Drain current (pulsed)	72	Α	
Ртот	Total dissipation at T _C = 25 °C	72	W	
E _{AS} ⁽³⁾	Single pulse avalanche energy	150	mJ	
TJ	Operating junction temperature range			
T _{stg}	Storage temperature range	-55 to 175 °C		

Notes:

Table 3: Thermal resistance

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.08	°C/W
R _{thj-pcb} (1)	Thermal resistance junction-pcb	31.3	°C/W

Notes:

⁽¹⁾Limited by package.

 $[\]ensuremath{^{(2)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(3)}}$ Starting $T_j = 25$ °C, $I_D = 9$ A, $V_{DD} = 60$ V

 $^{^{(1)}}$ When mounted on FR-4 board of 1inch², 2oz Cu, t < 10 s

Electrical characteristics STL45N10F7AG

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I_{D} = 250 μA	100			V
	Zara gata valtaga drain	$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V}$			1	
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V};$ $T_{C} = 125 \text{ °C}^{(1)}$			10	μΑ
I _{GSS}	Gate body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = 20 \text{ V}$			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.5		4.5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 9 A		20	24	mΩ

Notes:

Table 5: Dynamic

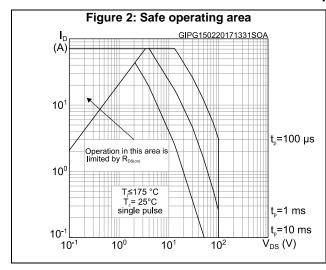
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1450	1	pF
Coss	Output capacitance	V _{DS} = 50 V, f = 1 MHz,	-	350	1	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	-	25	-	pF
Qg	Total gate charge	$V_{DD} = 50 \text{ V}, I_{D} = 18 \text{ A}, V_{GS} = 0$	-	19.5	ı	nC
Q _{gs}	Gate-source charge	to 10 V (see Figure 14: "Test circuit	-	9.1	-	nC
Q_{gd}	Gate-drain charge	for gate charge behavior")	-	4.3	-	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 50 \text{ V}, I_D = 9 \text{ A},$	-	15	-	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit	ı	5.5	1	ns
t _{d(off)}	Turn-off delay time	for resistive load switching	1	17	-	ns
tf	Fall time	times" and Figure 18: "Switching time waveform")	-	5	-	ns

 $[\]ensuremath{^{(1)}}\mbox{Defined}$ by design, not subject to production test.

Table 7: Source drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		18	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		72	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 9 A, V _{GS} = 0 V	-		1.2	V
t _{rr}	Reverse recovery time	I _{SD} = 18 A, di/dt = 100 A/μs,	-	46		ns
Qrr	Reverse recovery charge	V _{DD} = 80 V (see Figure 15: "Test circuit	-	46		nC
I _{RRM}	Reverse recovery current	for inductive load switching and diode recovery times")	-	2		Α

Notes:

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}\}text{Pulsed:}$ pulse duration=300 $\mu\text{s,}$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

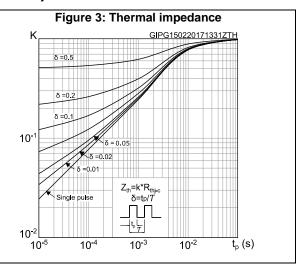
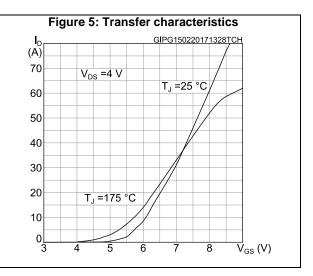
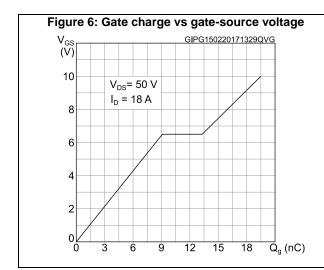


Figure 4: Output characteristics

(A)


(V_{GS}= 9, 10 V


(V_{GS}= 8 V

(V_{GS}= 7 V

(V_{GS}= 6 V

(

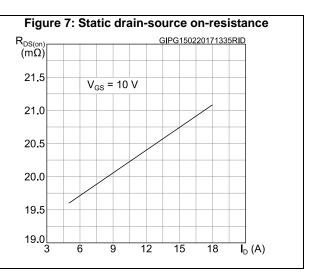
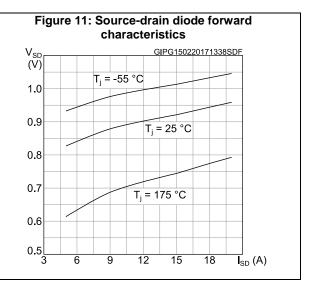
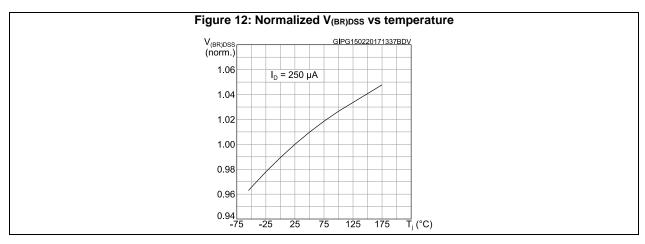
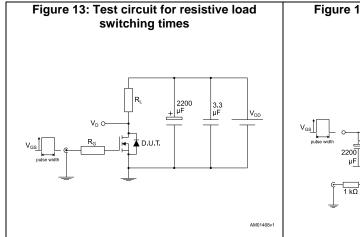
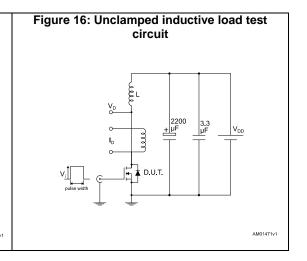
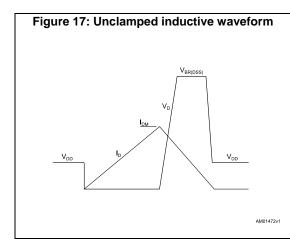
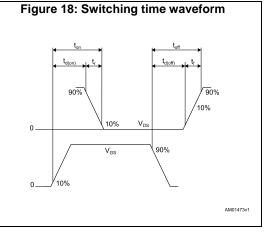




Figure 8: Capacitance variations C (pF) GIPG150220171329CVR C_{ISS} 10^{3} C_{oss} 10² f = 1 MHz C_{RSS} 10¹ 20 100 40 60 80 $\overline{V}_{DS}(V)$


Figure 9: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GIPG150220171337VTH 1.1 $I_D = 250 \, \mu A$ 1.0 0.9 8.0 0.7 0.6 -75 -25 25 75 125 T_i (°C) 175






Test circuits STL45N10F7AG

3 Test circuits

Package information 4

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

PowerFLAT™ 5x6 WF type R package information 4.1

BOTTOM VIEW 5 E3 E3 Detail A Scale 3:1 62 0.08 L(x4) b(x8) D5(x4) D4 SIDE VIEW A Detail A ŏ A0Y5 8231817 R WF Rev 14

Figure 19: PowerFLAT™ 5x6 WF type R package outline

Table 8: PowerFLAT™ 5x6 WF type R mechanical data

	Table 8: PowerFLAT *** 5X6	mm	lata
Dim.	Min.	Тур.	Max.
А	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
С	5.80	6.00	6.10
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.00	5.10
D5	0.25	0.4	0.55
D6	0.15	0.3	0.45
е		1.27	
E	6.20	6.40	6.60
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.20	0.325	0.45
E7	0.85	1.00	1.15
E9	4.00	4.20	4.40
E10	3.55	3.70	3.85
K	1.275		1.575
L	0.725	0.825	0.925
L1	0.175	0.275	0.375
θ	0°		12°

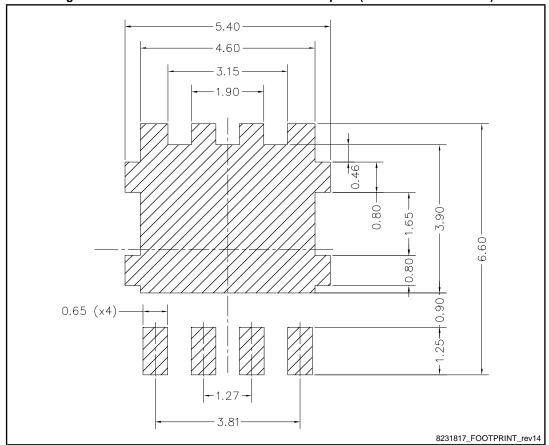


Figure 20: PowerFLAT™ 5x6 recommended footprint (dimensions are in mm)

Package information STL45N10F7AG

4.2 PowerFLAT™ 5x6 packing information

Figure 21: PowerFLAT™ 5x6 WF tape (dimensions are in mm)

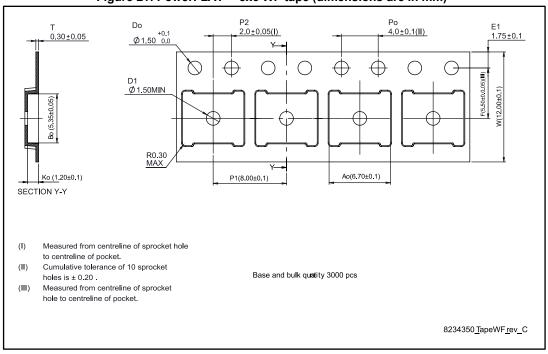
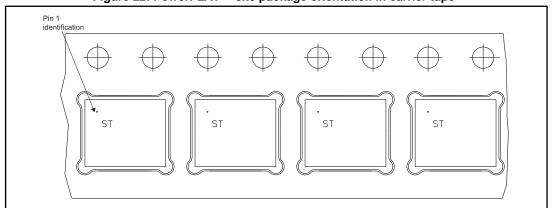



Figure 22: PowerFLAT™ 5x6 package orientation in carrier tape

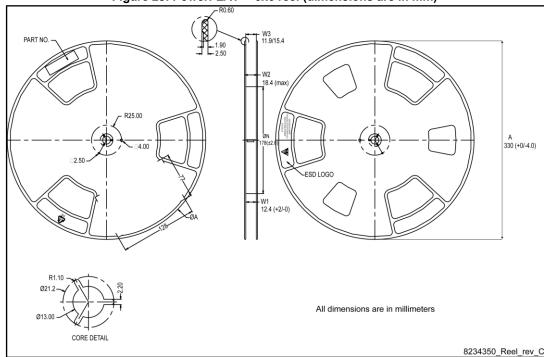


Figure 23: PowerFLAT™ 5x6 reel (dimensions are in mm)

Revision history STL45N10F7AG

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
16-Feb-2017	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C

IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI

DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384

NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956

NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF