STL57N65M5

N-channel 650 V, 0.061 Ω typ., 22.5 A MDmesh™ M5 Power MOSFET in a PowerFLAT™ 8x8 HV package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max.	I _D
STL57N65M5	710 V	0.069Ω	22.5 A

- Extremely low R_{DS(on)}
- Low gate charge and input capacitance
- Excellent switching performance
- 100% avalanche tested

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET based on the MDmesh™ M5 innovative vertical process technology combined with the well-known PowerMESH™ horizontal layout. The resulting product offers extremely low onresistance, making it particularly suitable for applications requiring high power and superior efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STL57N65M5	57N65M5	PowerFLAT™ 8x8 HV	Tape and reel

Contents STL57N65M5

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e information	10
	4.1	PowerFLAT™ 8x8 HV package information	11
	4.2	PowerFLAT™ 8x8 HV packing information	13
5	Revisio	n history	15

STL57N65M5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	650	V
V_{GS}	Gate-source voltage	± 25	V
$I_{D}^{(1)}$	Drain current (continuous) at T _C = 25 °C	22.5	Α
$I_D^{(1)}$	Drain current (continuous) at T _C = 100 °C	22	Α
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	90	Α
I _D ⁽³⁾	Drain current (continuous) at T _{pcb} = 25 °C	4.3	Α
I _D ⁽³⁾	Drain current (continuous) at T _{pcb} = 100 °C	2.7	Α
P _{TOT} ⁽³⁾	Total dissipation at T _{pcb} = 25 °C	2.8	W
P _{TOT} ⁽¹⁾	Total dissipation at T _C = 25 °C	189	W
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by Tj max)	9	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	960	mJ
dv/dt ⁽⁴⁾	Peak diode recovery voltage slope 15		V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
Tj	Max. operating junction temperature	150	

Notes

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.66	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	45	°C/W

Notes:

 $[\]ensuremath{^{(1)}}$ The value is rated according to $R_{thj\text{-case rated}}$ and limited by package.

⁽²⁾Pulse width limited by safe operating area.

 $[\]ensuremath{^{(3)}}\xspace$ When mounted on FR-4 board of 1 inch² , 2oz Cu.

 $^{^{(4)}}I_{SD} \leq 22.5$ A, di/dt ≤ 400 A/ μ s; V_{DS(peak)} < V_{(BR)DSS}, V_{DD} = 400 V.

 $^{^{(1)}}$ When mounted on FR-4 board of 1 inch², 2oz Cu.

Electrical characteristics STL57N65M5

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_{D} = 1 \text{ mA}$	650			V
	Zero gate voltage Drain	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V}$			1	μΑ
I _{DSS}	current	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V},$ $T_{C} = 125 \text{ °C}$			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nΑ
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 17.5 A		0.061	0.069	Ω

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	4200	ı	pF
C _{oss}	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	-	100	1	pF
C_{rss}	Reverse transfer capacitance	100	-	6	ı	pF
C _{o(er)} ⁽¹⁾	Equivalent output capacitance energy related	·		97	1	pF
C _{o(tr)} (2)	Equivalent output capacitance time related	V _{(BR)DSS}	-	344	ı	pF
R_{G}	Intrinsic gate resistance $f = 1 \text{ MHz}, I_D = 0 \text{ A}$		-	1.4	ı	Ω
Q_g	Total gate charge $V_{DD} = 520 \text{ V}, I_D = 17.5 \text{ A},$		-	96	ı	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V	-	24	-	nC
Q_{gd}	Gate-drain charge	(see Figure 15: "Gate charge test circuit")	-	40	-	nC

Notes:

 $^{^{(1)}}$ Co_(er) is defined as a constant equivalent capacitance giving the same stored energy as Coss when VDS increases from 0 to 80% VDSS

 $^{^{(2)}}C_{o(tr)} \ \text{is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}}$

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(V)}	Voltage delay time	V_{DD} = 400 V, I_{D} = 22.5 A R_{G} = 4.7 Ω , V_{GS} = 10 V (see Figure 16: " Test circuit for inductive load switching and diode recovery times"and Figure 19: "Switching time waveform")	-	84	-	ns
t _{r(V)}	Voltage rise time		-	10.8	-	ns
t _{f(i)}	Crossing fall time		-	11	-	ns
t _{C(off)}	Crossing time	waverorm*)		16.5	1	ns

Table 7: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		22.5	А
I _{SDM} ⁽¹⁾ , ⁽²⁾	Source-drain current (pulsed)		-		90	А
V _{SD} ⁽³⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 22.5 A	ı		1.5	V
t _{rr}	Reverse recovery time		-	378		ns
Q _{rr}	Reverse recovery charge	I _{SD} = 22.5 A, di/dt = 100 A/μs, V _{DD} = 100 V (see Figure 16: " Test circuit for inductive load switching and diode recovery times")	-	7		μC
I _{RRM}	Reverse recovery current	road emicriming and diodo rocovery timos y		37		Α
t _{rr}	Reverse recovery time		-	454		ns
Q _{rr}	Reverse recovery charge	I_{SD} = 22.5 A, di/dt = 100 A/µs, V_{DD} = 100 V, T_j = 150 °C (see <i>Figure 16: " Test circuit for inductive load switching and diode</i>	-	9.5		μC
I _{RRM}	Reverse recovery current	recovery times")	-	42		А

Notes:

 $[\]ensuremath{^{(1)}}$ The value is rated according to $R_{thj\text{-case}}$ and limited by package.

 $^{^{(2)}}$ Pulse width is limited by safe operating area

 $^{^{(3)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 3: Thermal impedance

Zth PowerFLAT 8x8 HV

0.2

0.1

0.05

Zth= K*RthJ-c

δ= tp/T

10²

10³

10⁴

10³

10²

tp(s)

Figure 4: Output characteristics AM14706v1 (A) V_{GS}= 9, 10V V_GS= 8 100 90 80 V_{GS}= 7V 70 60 50 40 30 20 VGS= 6V 10 15 25 VDs(V)

STL57N65M5 Electrical characteristics

Figure 8: Capacitance variations

(pF)

10000

1000

100

100

Ciss

Coss

Crss

Crss

Figure 9: Normalized gate threshold voltage vs temperature AM05459v1 VGS(th) (norm) 1.10 $ID = 250 \mu A$ 1.00 0.90 0.80 0.70 -25 25 50 -50 0 75

The previous figure E_{on} includes reverse recovery of a SiC diode.

STL57N65M5 Test circuits

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

STL57N65M5 Package information

4.1 PowerFLAT™ 8x8 HV package information

Figure 20: PowerFLAT™ 8x8 HV drawing

Table 8: PowerFLAT™ 8x8 HV mechanical data

Di	mm				
Dim.	Min.	Тур.	Max.		
А	0.75	0.85	0.95		
A1	0.00		0.05		
A3	0.10	0.20	0.30		
b	0.90	1.00	1.10		
D	7.90	8.00	8.10		
Е	7.90	8.00	8.10		
D2	7.10	7.20	7.30		
E1	2.65	2.75	2.85		
E2	4.25	4.35	4.45		
е		2.00			
L	0.40	0.50	0.60		

Figure 21: PowerFLAT™ 8x8 HV drawing

8

All dimensions are in millimeters.

STL57N65M5 Package information

4.2 PowerFLAT™ 8x8 HV packing information

Figure 22: PowerFLAT™ 8x8 HV tape

Figure 23: PowerFLAT™ 8x8 HV package orientation in carrier tape

Figure 24: PowerFLAT™ 8x8 HV reel

STL57N65M5 Revision history

5 Revision history

Table 9: Document revision history

Date	Revisi on	Changes		
14-May-2012	1	First release.		
25-Jan-2013	2	-Modified ID value and note 1 on first page -Modified: I _D , P _{TOT} , I _{AR} values, and note1, 4 on Table 2 -Modified: Rthj-case value on Table 3 -Modified: R _{DS(on)} on Table 4 -Modified: typical values on Table 5 and 6 -Modified: typical and max values on Table 7 -Inserted: Section 2.1: Electrical characteristics (curves) -Document staus promoted from preliminary data to production data.		
09-Oct-2015 3		Updated title, features and description Text and formatting changes throughout document. Updated Section 1: "Electrical ratings"and Section 2: "Electrical characteristics" Changes according to PCN9187: Updated package silhouette and figure Figure 1: "Internal schematic diagram" on cover page. Updated Section 4.1: "PowerFLAT™ 8x8 HV package information".		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B