

STL66DN3LLH5

Automotive-grade dual N-channel 30 V, 5.9 mΩ typ., 20 A STripFET™ H5 Power MOSFET in a PowerFLAT™ 5x6 double island package

Datasheet - production data

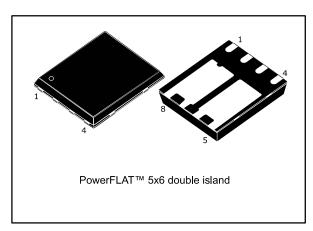
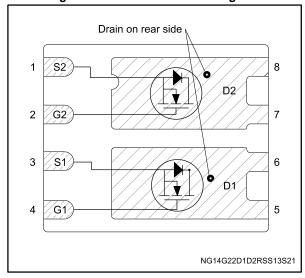



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD	Ртот
STL66DN3LLH5	30 V	$6.5~\text{m}\Omega$	20 A	4.7 W

- Designed for automotive applications and AEC-Q101 qualified
- Logic level V_{GS(th)}
- 175 °C maximum junction temperature
- Wettable flanks package

Applications

Switching applications

Description

This device is a dual N-channel Power MOSFET developed using STMicroelectronics' STripFET™ H5 technology. The device has been optimized to achieve very low on-state resistance, contributing to a FoM that is among the best in its class.

Table 1: Device summary

Order code	Marking	Package	Packing
STL66DN3LLH5	66DN3LH5	PowerFLAT™ 5x6 double island	Tape and reel

Contents STL66DN3LLH5

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT™ 5x6 double island WF type C package informati	on9
	4.2	PowerFLAT™ 5x6 WF packing information	12
5	Revisio	n history	14

STL66DN3LLH5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	30	V
V_{GS}	Gate-source voltage	±22	V
I _D ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	78.5	Δ
ID(**)	Drain current (continuous) at T _{case} = 100 °C	55.5	А
Drain current (continuous) at T _{pcb} = 25 °C		20	Α
ID(=)	Drain current (continuous) at T _{pcb} = 100 °C	14.2	A
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	80	Α
Ртот	Total dissipation at T _{case} = 25 °C	72	14/
P _{TOT} ⁽¹⁾	Total dissipation at T _{pcb} = 25 °C	4.7	W
T _{stg}	Storage temperature		°C
Tj	T _j Operating junction temperature		

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.08	°C/W
R _{thj-pcb} ⁽¹⁾	b ⁽¹⁾ Thermal resistance junction-pcb		C/VV

Notes:

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AV}	Avalanche current, not repetitive	18.5	Α
E _{AS} ⁽¹⁾	Single pulse avalanche energy	270	mJ

Notes:

 $^{^{(1)}}$ This value is rated according to $R_{\text{thj-c}}$

 $^{^{(2)}}$ When mounted on a 1-inch² FR-4, 2 Oz copper board, t < 10 s.

⁽³⁾ Pulse width is limited by safe operating area.

 $^{^{(1)}}$ When mounted on a 1-inch² FR-4, 2 Oz copper board, t < 10 s.

 $^{^{(1)}}$ starting $T_j = 25~^{\circ}C,~I_D = 38~A,~V_{DD} = 24~V.$

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30			٧
	Zoro goto voltago drain	$V_{GS} = 0 \text{ V}, V_{DS} = 30 \text{ V}$			1	
IDSS	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 30 V, T _C = 125 °C			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 22 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1		3	V
D-ac	Static drain-source on-	$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$		5.9	6.5	mΩ
R _{DS(on)}	resistance	V _{GS} = 4.5 V, I _D = 10 A		7.1	7.9	11122

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1500	ı	
Coss	Output capacitance	$V_{DS} = 25 \text{ V, } f = 1 \text{ MHz,}$	-	230	ı	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	23	1	Pi
Q_g	Total gate charge	$V_{DD} = 15 \text{ V}, I_D = 19 \text{ A},$	-	12	-	
Qgs	Gate-source charge	V _{GS} = 4.5 V (see Figure 14: "Test circuit for gate charge	-	5	-	nC
Q_{gd}	Gate-drain charge	behavior")	-	4.4	1	

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 15 \text{ V}, I_D = 9.5 \text{ A}$	-	8.8	-	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit for	ı	18	ı	
t _{d(off)}	Turn-off delay time	resistive load switching	ı	26	ı	ns
t _f	Fall time	times" and Figure 18: "Switching time waveform")	-	4	-	

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		20	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		80	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 19 A	-		1.1	V
t _{rr}	Reverse recovery time	$I_{SD} = 19 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	24		ns
Qrr	Reverse recovery charge	V_{DD} = 25 V, T_j = 150 °C (see <i>Figure 15: "Test circuit for</i>	-	12		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	1.8		Α

Notes:

 $^{^{\}left(1\right) }$ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

2.1 Electrical characteristics (curves)

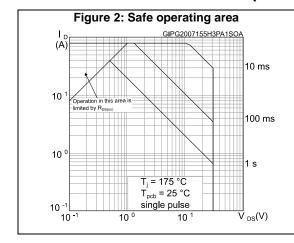
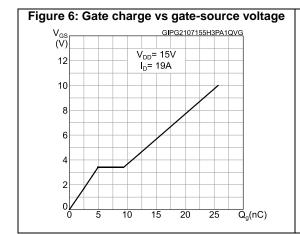
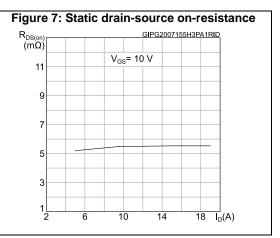




Figure 3: Thermal impedance K
GIPG2107155H3PA1ZTH $\delta = 0.5$ $\delta = 0.2$ $\delta = 0.05$ $\delta = 0.02$ $\delta = 0.01$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.03$ $\delta = 0.04$ $\delta = 0.02$ $\delta = 0.05$ $\delta = 0.05$ $\delta = 0.02$ $\delta = 0.05$ $\delta = 0.02$ $\delta = 0.03$ $\delta = 0.04$ $\delta = 0.05$ $\delta =$

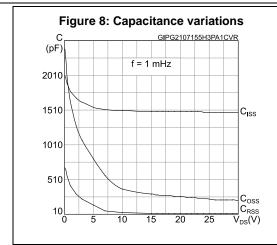
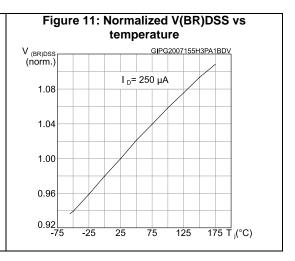


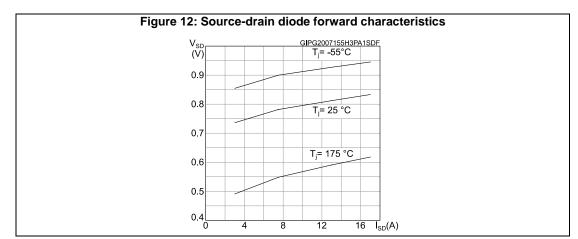
Figure 9: Normalized gate threshold voltage vs temperature

V_{GS(th)} GIPG2007155H3PA1VTH
(norm.)

1.2

1.0


0.8


0.6

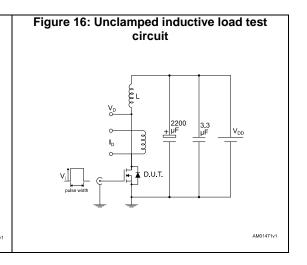
0.4

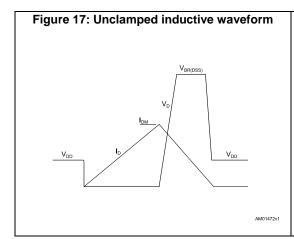
0.2

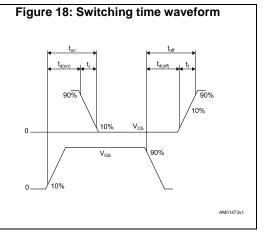
-75
-25
25
75
125
175 T_j(°C)

Test circuits STL66DN3LLH5

3 Test circuits


Figure 13: Test circuit for resistive load switching times


Figure 14: Test circuit for gate charge behavior


12 V 47 KQ 100 nF D.U.T.

VGS 1 KQ 100 NF D.U.T.

AM01469v1

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 PowerFLAT™ 5x6 double island WF type C package information

Figure 19: PowerFLAT™ 5x6 double island WF type C package outline Bottom view Pin 1 identification E7 E6 Detail A Scale 3:1 0.08 b (x8) Side view Top view Detail A identification $\overset{\times}{\infty}$ 826945_DI_WF_typeC_r13

Table 9: PowerFLAT™ 5x6 double island WF type C mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
D	5.00	5.20	5.40
D2	1.68		1.88
Е	6.20	6.40	6.60
E2	3.50		3.70
E4	0.55		0.75
E5	0.08		0.28
E6	2.35		2.55
E7	0.40		0.60
е		1.27	
L	0.90		1.10
L1		0.275	
K	1.05		1.35

5.4 4.45 3.15 1.9 0.4 99. 0.65 <u>(x4)</u> 1.25

3.81

Figure 20: PowerFLAT™ 5x6 double island recommended footprint (dimensions are in mm)

8256945_DI_WF_FP_R13

Package information STL66DN3LLH5

4.2 PowerFLAT™ 5x6 WF packing information

Figure 21: PowerFLAT™ 5x6 WF tape

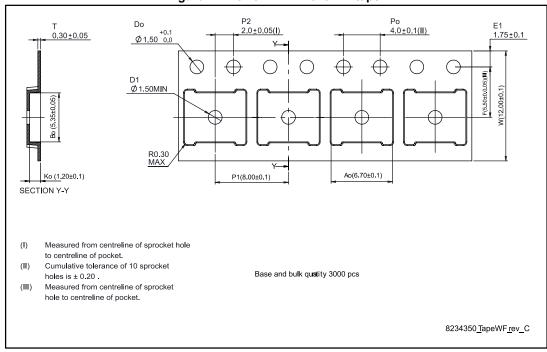
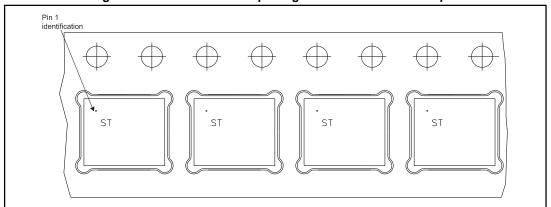



Figure 22: PowerFLAT™ 5x6 package orientation in carrier tape

PART NO.

R25.00

R25.00

R25.00

R25.00

R25.00

R25.00

R25.00

R25.00

R25.00

All dimensions are in millimeters

CORE DETAIL

8234350_Reel_rev_C

Revision history STL66DN3LLH5

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
12-Oct-2011	1	First release.
14-Mar-2012	2	Document status changed from preliminary data to production data. Inserted Section 5: Packaging mechanical data. Minor text changes.
28-Aug-2015	3	Text and formatting changes throughout document Updated device marking information. Updated device package information.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C

IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI

DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384

NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956

NTE2911 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B