

STL73

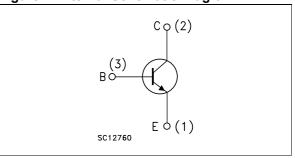
MEDIUM VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- n MEDIUM VOLTAGE CAPABILITY
- n LOW SPREAD OF DYNAMIC PARAMETERS
- n MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- n VERY HIGH SWITCHING SPEED

APPLICATIONS

COMPACT FLUORESCENT LAMPS (CFLS)

DESCRIPTION


The device is manufactured using high voltage Multi-Epitaxial Planar technology for high switching speeds and medium voltage capability.

It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA.

The STL series is designed for use in Compact Fluorescent Lamps.

Figure 2: Internal Schematic Diagram

Table 1: Order Codes

Part Number	Marking	Package	Packaging
STL73	L73 L or (#) L73 H	TO-92	Bulk

[#] See:note on page 2

Table 2: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CES} Collector-Emitter Voltage (V _{BE} = 0)		700	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	400	V
V_{EBO}	Emitter-Base Voltage (I _C = 0)	V _{(BR)EBO}	V
I _C	Collector Current	1.5	Α
I _{CM}	Collector Peak Current (t _p < 5ms)	3	Α
Ι _Β	Base Current	0.5	Α
I _{BM}	Base Peak Current (t _p < 5ms)	1.5	Α
P _{tot}	Total Dissipation at T _C = 25 °C	1.1	W
T _{stg}	Storage Temperature	-65 to 150	°C
TJ	Max. Operating Junction Temperature	150	°C

Table 3: Thermal Data

|--|

Table 4: Electrical Characteristics (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Co	onditions	Min.	Тур.	Max.	Unit
I _{CEV}	Collector Cut-off Current	V _{CE} = 700 V				1	mA
	(V _{BE} = -1.5 V)	V _{CE} = 700 V	T _j = 125 °C			5	mA
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	i _E = 10 mA		9		18	V
	$(I_C = 0)$						
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage	I _C = 10 mA		400			V
	$(I_B = 0)$						
V _{CE(sat)} *	Collector-Emitter	I _C = 0.3 A	I _B = 60 mA		0.15	0.4	V
	Saturation Voltage	I _C = 0.6 A	I _B = 120 mA		0.25	0.6	V
		I _C = 1 A	I _B = 250 mA		0.4	1	V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 0.6 A	I _B = 120 mA		0.95	1.1	V
h _{FE}	DC Current Gain #	I _C = 0.6 A	V _{CE} = 3 V				
		Group L		10		16	
		Group H		15		21	
		I _C = 1.5 A	$V_{CE} = 5 V$	4		10	
	RESISTIVE LOAD	I _C = 1	V _{CC} = 125 V				
t_f	Rise Time	I _{B1} = -I _{B2} = 200 mA	t _p = 25 μs			1	μs
	Storage Time	(see figure 4)				4	μs
	Fall Time	, , , , , , , , , , , , , , , , , , ,				0.7	μs
	INDUCTIVE LOAD	I _C = 0.3	V _{Clamp} = 300 V				
t_f	Fall Time	$I_{B1} = -I_{B2} = 60 \text{ mA}$	L = 3 mH		0.3		μs
		(see figure 3)					

^{*} Pulsed: Pulsed duration = 300 $\mu s,$ duty cycle ≤ 1.5 %.

2/6

[#] The product is pre-selected in DC current gain (Group L and Group H). STMicroelectronics reserves the right to ship either groups according to production availability. Please contact your nearest STMicroelectronics sales office for delivery datails.

Figure 3: Inductive Load Switching Test Circuit

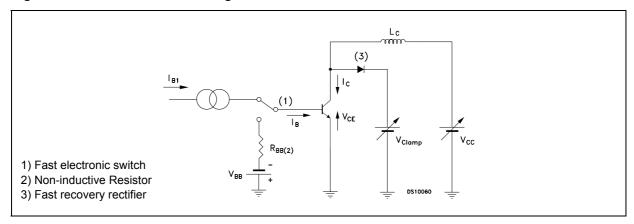
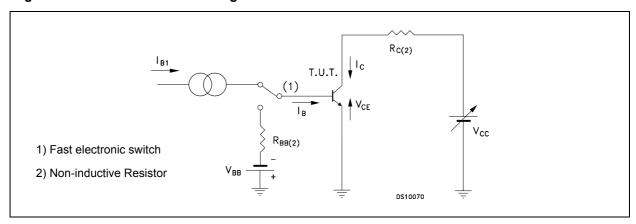
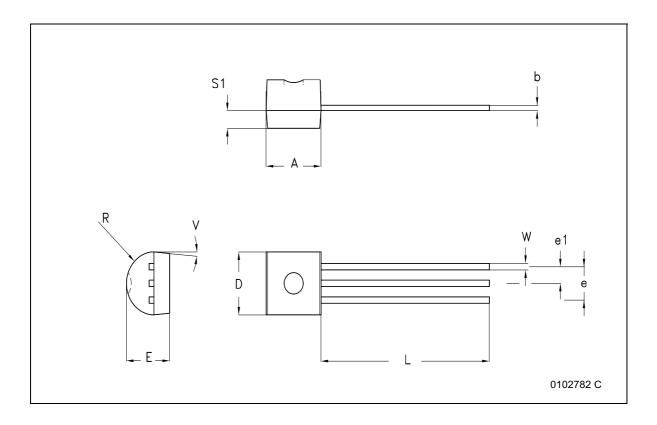




Figure 4: Restistive Load Switching Test Circuit

TO-92 BULK SHIPMENT MECHANICAL DATA

DIM	mm.					
DIM.	MIN.	ТҮР	MAX.			
А	4.32		4.95			
b	0.36		0.51			
D	4.45		4.95			
E	3.30		3.94			
е	2.41		2.67			
e1	1.14		1.40			
L	12.70		15.49			
R	2.16		2.41			
S1	0.92		1.52			
W	0.41		0.56			
V		5 ^O				

\7/_°

Figure 5: Revision History

Release Date	Version	Change Designator
11-Jul-2005	1	First Release.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners

 $\ensuremath{\texttt{©}}$ 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

\7/.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E

FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G

NTE101 NTE13 NTE15