

STLD125N4F6AG

Automotive-grade N-channel 40 V, 2.4 mΩ typ., 120 A STripFET™ F6 Power MOSFET in a PowerFLAT™ 5x6 DSC

Datasheet - production data

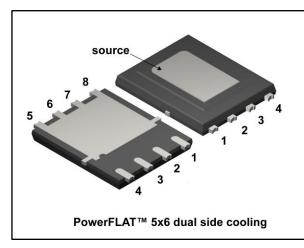
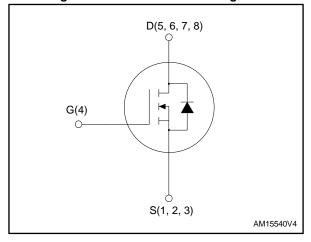



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID
STLD125N4F6AG	40 V	$3.0~\text{m}\Omega$	120 A

- AEC-Q101 qualified
- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss
- Wettable flank package

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using the STripFET $^{\text{TM}}$ F6 technology with a new trench gate structure. The resulting Power MOSFET exhibits very low R_{DS(on)} in all packages.

Table 1: Device summary

Order code	Marking	Package	Packaging
STLD125N4F6AG	125	PowerFLAT™ 5x6 dual side cooling	Tape and reel

Contents STLD125N4F6AG

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Package	e information	9
	4.1	PowerFLAT™ 5x6 dual side cooling package information	9
	4.2	PowerFLAT™ 5x6 dual side cooling packing information	11
5	Revisio	n history	12

STLD125N4F6AG Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	40	V
V _{GS}	Gate-source voltage	±20	٧
I _D ⁽¹⁾⁽²⁾	Drain current (continuous) at T _C = 25 °C	120	Α
I _D ⁽²⁾	Drain current (continuous) at T _C = 100 °C	101	Α
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	480	Α
P _{TOT} ⁽²⁾	Total dissipation at T _C = 25 °C	130	W
TJ	Operating junction temperature range	FF to 17F	°C
T _{stg}	Storage temperature range	-55 to 175	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-c} top side	Thermal resistance junction-case top side	3.0	
Rthj-c bottom side	Thermal resistance junction-case bottom side	1.14	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	31.3	

Notes:

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AV}	Avalanche current, repetitive or not repetitive (pulse width limited by maximum junction temperature)	90	Α
E _{AS}	Single pulse avalanche energy ($T_j = 25$ °C, $I_C = I_{AV}$, $V_{DD} = 16$ V)	150	mJ

⁽¹⁾Limited by package.

 $[\]ensuremath{^{(2)}}\xspace$ The value is rated according to $R_{thj\text{-}case\ bottom\ side}.$

 $[\]ensuremath{^{(3)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(1)}}$ When mounted on 1 inch² 2 Oz. Cu board, t ≤ 10 s

Electrical characteristics STLD125N4F6AG

2 Electrical characteristics

(T_C= 25 °C unless otherwise specified)

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	40			>
	Zoro goto voltago Droin	$V_{GS} = 0 \text{ V}, V_{DS} = 16 \text{ V}$			1	μΑ
IDSS	Zero gate voltage Drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 16 \text{ V},$ $T_j = 125 \text{ °C}^{(1)}$			10	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.5		3.5	V
D	Static drain-source	V _{GS} = 10 V, I _D = 75 A		2.4	3.0	mΩ
R _{DS(on)}	on-resistance	$V_{GS} = 6.5 \text{ V}, I_D = 75 \text{ A}$		3.0	4.0	11122

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	5600	1	pF
Coss	Output capacitance	V _{DS} = 10 V, f = 1 MHz,	-	890	-	pF
Crss	Reverse transfer capacitance	Ves = 0 V	-	560	-	pF
Qg	Total gate charge	$V_{DD} = 32 \text{ V}, I_D = 75 \text{ A},$	-	91	-	nC
Qgs	Gate-source charge	V _{GS} = 0 to 10 V (see Figure 14: "Test circuit for gate charge	-	28	1	nC
Q_{gd}	Gate-drain charge	behavior")	-	27	-	nC

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 30 \text{ V}, I_D = 75 \text{ A},$	-	47	-	ns
t _r	Rise time	$R_G = 30 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit for	-	300	-	ns
t _{d(off)}	Turn-off-delay time	resistive load switching times"	-	255	-	ns
t f	Fall time	and Figure 18: "Switching time waveform")	-	220	-	ns

 $^{^{(1)}}$ Defined by design. Not subject to production test.

Table 8: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		120	Α
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		-		480	Α
V _{SD} (3)	Forward on voltage	V _{GS} = 0 V, I _{SD} = 90 A	-		1.2	V
t _{rr}	Reverse recovery time	I _{SD} = 90 A, di/dt = 100 A/μs,	-	40		ns
Qrr	Reverse recovery charge	V _{DD} = 20 V (see Figure 15: "Test circuit for inductive load	-	41		nC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	2		Α

Notes:

⁽¹⁾Limited by package

 $[\]ensuremath{^{(2)}}\mbox{Pulse}$ width is limited by safe operating area.

 $^{^{(3)}\}text{Pulse}$ test: pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

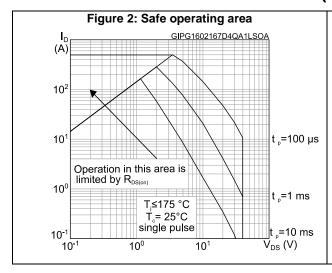
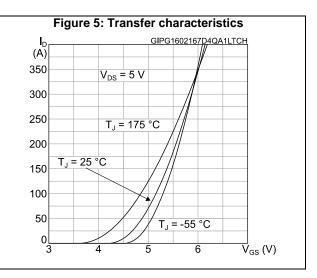
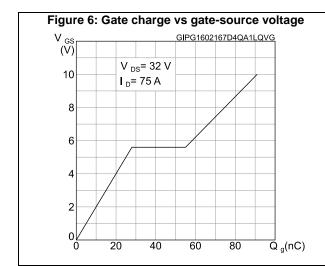




Figure 3: Thermal impedance $K = \frac{10^{-2}}{\delta = 0.5}$ $\delta = 0.5$ $\delta = 0.02$ $Z_h = K^* R_{thjc} \text{ bottom side } \delta = tp/T$ $\frac{10^{-2}}{10^{-5}}$ 10^{-4} 10^{-3} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{-2}

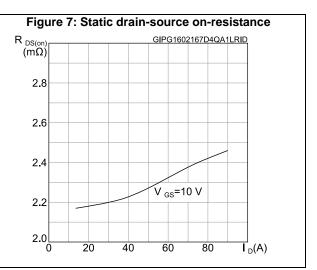


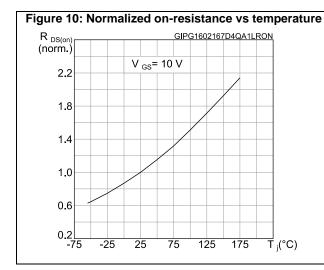
Figure 8: Capacitance variations

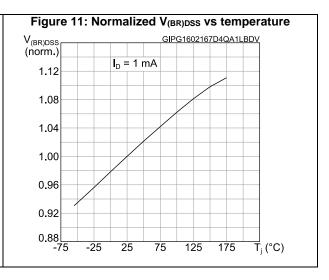
C GIPG1602167D4QA1LCVR

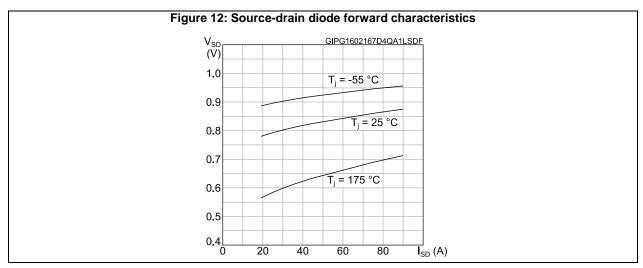
C CISS

103

C COSS


F = 1 MHz
V_{os} = 0 V


C CRSS


102

0 10 20 30 V_{DS} (V)

Figure 9: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GIPG1602167D4QA1LVTH I_D= 250 μA 1.2 1.0 8.0 0.6 -25 25 75 125 175 T_i(°C)

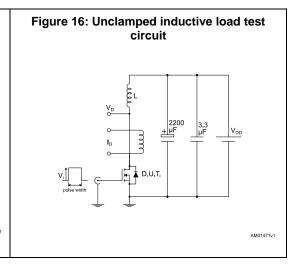
Test circuits STLD125N4F6AG

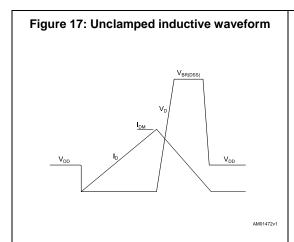
3 Test circuits

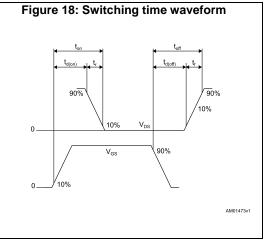
Figure 13: Test circuit for resistive load switching times

Figure 14: Test circuit for gate charge behavior

12 V 47 KΩ 100 Ω D.U.T.


12 V 47 KΩ VGD


14 V CONST 100 Ω VGD


15 V CONST 100 Ω VGD

AM01469v1

Figure 15: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

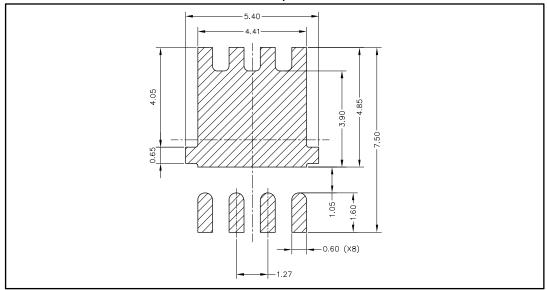

4.1 PowerFLAT™ 5x6 dual side cooling package information

Figure 19: PowerFLAT™ 5x6 dual side cooling package outline BOTTOM VIEW Ļ SIDE VIEW D3 र्शको) D Plated Area Εđ E3 TOP VIEW 8548760_2

Table 9: PowerFLAT™ 5x6 dual side cooling mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	0.66	0.71	0.76
A1	0.60		0.75
b	0.33	0.43	0.53
С	0.15	0.203	0.30
D		5.00 BSC	
D1	4.06	4.21	4.36
D2		2.40 BSC	
D3	2.80	3.30	3.80
E		6.00 BSC	
E1	3.525	3.675	3.825
E2	1.05	1.20	1.35
E3		3.80 BSC	
E4	4.20	4.70	5.20
е		1.27 BSC	
I			0.15
L	0.15	0.25	0.35
L1	0.925	1.05	1.175
L2	0.45	0.575	0.70
θ		12° BSC	
ϑ1		7° BSC	
j		0.20 BSC	

Figure 20: PowerFLAT™ 5x6 dual side cooling recommended footprint (dimensions are in mm)

STLD125N4F6AG Package information

4.2 PowerFLAT™ 5x6 dual side cooling packing information

Figure 21: PowerFLAT™ 5x6 dual side cooling tape (dimensions are in mm)

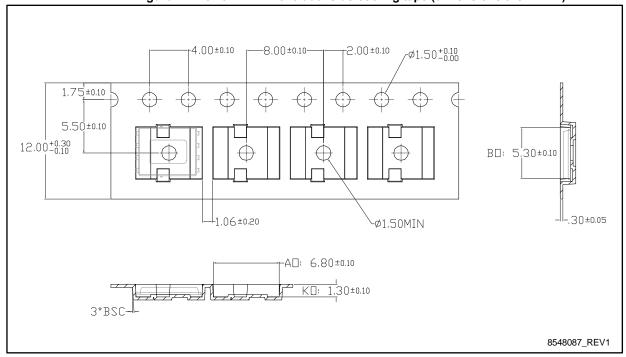
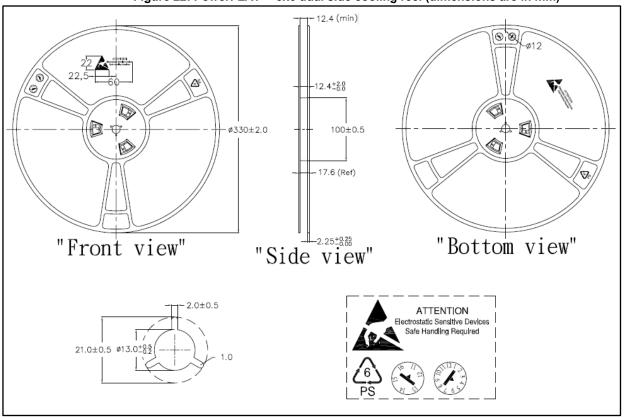



Figure 22: PowerFLAT™ 5x6 dual side cooling reel (dimensions are in mm)

Revision history STLD125N4F6AG

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
16-Feb-2016	1	First release.
07-Feb-2017	2	Document status promoted from preliminary to production data. Updated <i>Table 3: "Thermal data"</i> and <i>Table 5: "On/off states"</i> . Minor text changes.
23-Feb-2017	3	Updated features on cover page. Updated Table 5: "On/off states" and Figure 9: "Normalized gate threshold voltage vs temperature". Minor text changes
12-Jul-2017	4	Added Section 4.2: "PowerFLAT™ 5x6 dual side cooling packing information".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 SPP20N60S5XK FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C)

BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7

EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941

NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911

DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF