

STLDC08

Step-up controller for LED supply

Features

- Input voltage range from 0.8 V to 3.6 V
- Overvoltage protection
- Drives N-channel MOSFET or NPN bipolar transistor
- No control loop compensation required
- FET driver for very precise PWM dimming

Applications

- Single/dual cell NiMH, NiCd, or alkaline batteries
- Small appliances LED lighting
- Portable lighting

Description

The STLDC08 LED driver step-up controller is optimized to operate from one or two NiCd/NiMH or alkaline cells. The IC is able to drive an external MOSFET (N-channel) enabling it for use with wide power levels. Hysteretic control eliminates the need for small signal control loop compensation. The IC integrates an FET driver for a precise PWM dimming. STLDC08 comes in a DFN10 (3 x 3 mm) package.

Table 1.Device summary

Order code	Marking	Package
STLDC08PUR	STLDC08	DFN10 (3 x 3 mm.)

Contents

1	Арр	lication diagram	3
2	Abs	olute maximum ratings	5
3	Pin	configuration	6
4	Elec	ctrical characteristics	7
5	Турі	ical performance characteristics	9
6	Bloc	ck diagram	11
7	Deta	ailed description	12
	7.1	Main control loop	12
	7.2	Start up	12
	7.3	Over voltage protection (OVP)	
	7.4	Enable/PWM	13
	7.5	Dimming	14
8	Арр	lication information	15
	8.1	LED current programming	15
	8.2	Duty cycle	15
	8.3	Inductor selection	15
	8.4	Inductor peak current limit	17
	8.5	Power MOSFET selection	18
	8.6	Schottky diode selection	20
	8.7	Input capacitor	20
	8.8	Output capacitor	20
9	Dem	nonstration board	21
10	Layo	out suggestion	22
11	Pack	kage mechanical data	24
2/29		Doc ID 18476 Rev 1	57

12	Revision history		28
----	-------------------------	--	----

1 Application diagram

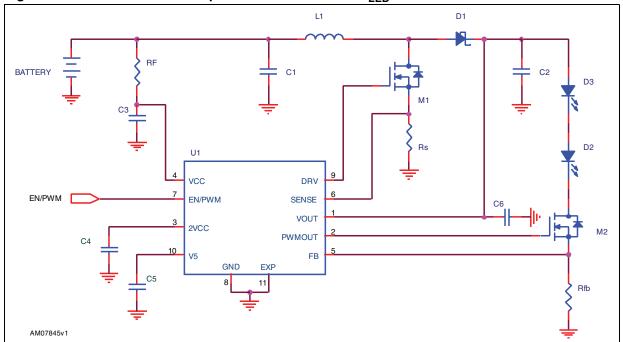
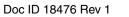



Figure 1. Electric schematic optimized for 2 LEDs and I_{LED} = 200 mA

Reference	Manufacturer	Part number	Value	Size
C1	Murata	GRM21BR60J475	4.7 µF, 6.3 V	0805
C2	Murata	GRM31CB31C106K	10 µF, 16 V	1206
C4	Murata	GRM188R70J103KA01B	10 nF, 6.3 V	0603
C3, C5, C6	Murata	GRM188R61C105K	1 µF, 16 V	0603
L	Coilcraft	LPS6235-103ML	10 µH	6 mm x 6 mm
M1,M2	STMicroelectronics	STS5DNF20V		SO-8
D1	STMicroelectronics	STPS2L30		SMA
Rfb			0.47 Ω	0805
Rs			0.047 Ω	0805
RF			0 Ω	0603

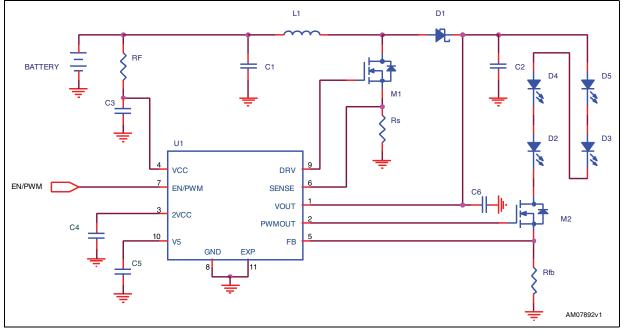


Figure 2. Electric schematic optimized for 4 LEDs and $I_{LED} = 300 \text{ mA}$

Table 3.	List of components
----------	--------------------

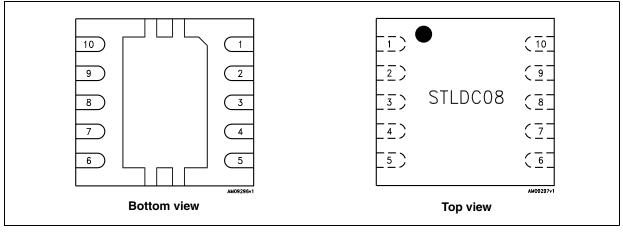
Part reference	Manufacturer	Part number	Value	Size
C1	Murata	GRM21BR60J106KE19	10 µF, 6.3 V	0805
C2	Murata	GRM31CR61C226K	22 µF, 16 V	1206
C4	Murata	GRM188R70J103KA01B	10 nF, 6.3 V	0603
C3, C5, C6	Murata	GRM188R61C105K	1 µF, 16 V	0603
M1,M2	STMicroelectronics	STS5DNF20V		SO-8
D1	STMicroelectronics	STPS2L30		SMA
L	Coilcraft	DO3316P-223_L	22 µH	12.95 mm x 9.4 mm
Rfb			0.33 Ω	0805
Rs			0.033 Ω	0805
RF			0 Ω	0603

2 Absolute maximum ratings

Symbol Parameter		Value	Unit
V _{CC}	Supply voltage	- 0.3 to 4.6	V
EN/PWM	Analog input	- 0.3 to 7	V
FB	Analog input	- 0.3 to 2	V
SENSE	Analog input	- 0.3 to 20	V
2V _{CC}	Analog outputs	0 to 4	V
V5	Analog outputs	- 0.3 to 7	V
DRV, PWMOUT	Analog outputs	V _{CC} - 1.2 to 7	V
V _{OUT}	Output voltage	- 0.3 to 20	V
ESD	Human body model (all pins)	±2	kV
PD	DFN10L 3x3 T _A = 25 °C	2.2	W
TJ	Junction temperature	- 40 to 85	°C
T _{STG}	Storage temperature range	- 55 to 85	°C

Table 4. Absolute maximum ratings

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.


Table 5. Thermal data

Symbol	Symbol Parameter		Unit
R _{thJC}	Thermal resistance junction-case	3	°C/W
R _{thJA}	Thermal resistance junction-ambient	57.1 ⁽¹⁾	°C/W

1. With two sides, two planes PCB following EIA/JEDEC JESD51-7 standard.

3 Pin configuration

Figure 3. Pin connections (top through view)

Table 6. Pin description

Pin #	Pin name	Pin function
1	VOUT	Over voltage protection and supply pin for the IC when $V_{OUT} > 2 V$
2	PWMOUT	Driver of the external MOSFET for PWM dimming. The driver stage is controlled by EN/PWM signal
3	2Vcc	Charge pump output
4	VCC	Supply voltage when V_{OUT} < 2 V, this pin represents the input of the internal charge pump
5	FB	Feedback pin for LED current control
6	SENSE	Sense resistor for current mode control and peak current limit
7	EN/PWM	Enable pin and PWM control input for PWMOUT pin
8	GND	Ground reference
9	DRV	Driver output for Boost stage MOSFET
10	V5	Internal regulator output. Decouple this pin locally to the IC ground with a minimum of 1 μF ceramic capacitor
	Exposed Pad	The exposed pad needs to be connected and soldered to analog ground

4 Electrical characteristics

 T_A = -40 to 85; C_{IN} = 22 μ F; C_{OUT} =10 μ F; PWMOUT = 3300 pF; DVR = 3300 pF; 2V_{CC} =10 nF; V5 =1 μ F; V_{CC} = 1.5V; V_{OUT} = 3 V; FB = GND; SENSE = GND; EN/PWM = V_{CC}; unless otherwise specified.

Table 7.	Electrical	characteristics
	LICCUICAI	characteristics

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
VCC Purpting Find of the section Point of the sect	General see	General section						
$\begin{tabular}{ c $	V _{CC}	Supply voltage range	V _{OUT} = GND	0.8		3.6	V	
$\begin{tabular}{ c c c c c c } \hline Shutdown current & EN = GND Shutdown mode & 5 & 10 & μ \\ \hline OVP & Overvoltage protection & Rising edge & 18 & $19.5 & V \\ \hline OVP & Overvoltage protection & Rising edge & 18 & $19.5 & V \\ \hline Poperating supply current & $V_{OUT} = 3 V, FB = 500 mV (no switching) & $60 & $100 & μ \\ \hline Poperating supply current & $V_{OUT} = 3 V, FB = GND & $1.3 & 2 & r \\ \hline Poperating supply current & $V_{OUT} = 10 V, FB = GND & $1.3 & 2 & r \\ \hline Shutdown current & EN = GND & $1.3 & 2 & r \\ \hline Shutdown current & EN = GND & $1.5 & $10 & μ \\ \hline Porver section (DRV output) & $V_{OUT} = 100 mA & $1.5 & $1.5 & 10 & r \\ \hline Porver section (DRV output) & $V_{OUT} = 100 mA & $120 & 20 & r \\ \hline Porver section (DRV output) & $V_{DRVL} & $Low level voltage & $I_{DRV} = 100 mA & $120 & 20 & r & r \\ \hline V_{DRVH} & $High level voltage & $I_{DRV} = 100 mA & $120 & 20 & r & r \\ \hline V_{DRVH} & $High level voltage & $I_{DRV} = 100 mA & $120 & 20 & r & r \\ \hline FB & $V_{TRV} & $FB = Gedback voltage & $T_A = 25 \ C & 90 & $105 $ $116 $ m \\ \hline I_{FB} & $Bias current & $FB = 2 V $ & 20 & 20 & 10 & $116 $ m \\ \hline T_{OR(MAX)} & $Maximum On time & $FB = 2 V $ & 20 & 20 & 10 & 1 \\ \hline FWM OUT = $V_{CININ} & $Minimum Off time $ $T_A = 25 \ C $ & 90 & $105 $ $116 $ m \\ \hline PV_{PRWOUT = VUT} & $V_{DRVOUT} = $100 \ MA $ & 10 & $11 $ 10 $ m \\ \hline PV_{PRMOUT} & $Low level voltage $ $I_{PWMOUT} = 100 \ MA $ & 10 $ 20 $ 00 $ m \\ \hline PV_{PWMOUT} & $Low level voltage $ $I_{PWMOUT} = 100 \ MA $ $ 20 $ 00 $ m r \\ \hline PV_{PWMOUT} & $Low level voltage $ $I_{PWMOUT} = $100 \ mA $ 10 $ 20 $ 00 $ m r \\ \hline PV_{PWMOUT} & $Iimhe $ $Iimhe $ $I_{PWMOUT} = $100 \ MA $ $ $I_{20} $ $	Ivcc		V _{OUT} = GND		3		mA	
$\begin{tabular}{ c c c c c c } \hline V_{DUT} & V_{DUT} & V_{DUT} & V_{TB} & S00 mV (no) & 60 & 100 & \mu \\ \hline V_{OUT} & 3 V, FB & S00 mV (no) & 60 & 100 & \mu \\ \hline w_{witching} & V_{OUT} & 3 V, FB & GND & 800 & 1.3 & 2 & m \\ \hline v_{OUT} & 10 V, FB & GND & 1.3 & 2 & m \\ \hline v_{OUT} & 10 V, FB & GND & 5 & 10 & \mu \\ \hline v_{OUT} & Shutdown current & EN & GND & 5 & 10 & \mu \\ \hline 2VCC & Charge pump ON & V_{OUT} floating; V_{CC} & 0.8 V & 1.5 & V \\ \hline Driver section (DRV output) & V_{OUT} floating; V_{CC} & 0.8 V & 1.5 & V \\ \hline Driver section (DRV output) & V_{OUT} floating; V_{CC} & 0.8 V & 1.5 & V \\ \hline Driver section (DRV output) & V_{OUT} floating; V_{CC} & 0.8 V & 1.5 & V \\ \hline Driver section (DRV output) & V_{OUT} floating; V_{CC} & 0.8 V & 1.5 & V \\ \hline Driver section (DRV output) & V_{OUT} floating; V_{CC} & 0.8 V & 1.5 & V \\ \hline Driver section (DRV output) & V_{OUT} floating; V_{CC} & 0.8 V & 1.5 & V \\ \hline Driver section (DRV output) & V_{OUT} floating; V_{CC} & 0.8 V & 1.5 & V \\ \hline Driver section (DRV output) & V_{OUT} & 100 mA & 80 & 160 & m \\ \hline V_{DRVH} & High level voltage & I_{DRV} & -100 mA & 120 & 240 & m \\ \hline t_{R} & Rise time & C_{DRV} & 3300 pF & 20 & 105 & 116 & m \\ \hline I_{FB} & Bias current & FB & 2 V & 20 & 500 & m \\ \hline T_{Iming} & & & & & & & & & & & & & & & & & & &$		Shutdown current	EN = GND Shutdown mode		5	10	μA	
Note Switching) Sol Not P Note P Switching) Sol Not P Note P Switching) Sol Sol P Vout 3 V, FB = GND (switching) Sol Sol P Shutdown current EN = GND 1.3 2 m ZVCC Charge pump ON Vout F GND 5 10 P Driver section (DRV output) Vout floating; V _{CC} = 0.8 V 1.5 V V V _{DRVL} Low level voltage I _{DRV} = 100 mA 80 160 m V _{DRVH} High level voltage I _{DRV} = 100 mA 80 160 m t F all time C _{DRV} = 3300 pF 30 r m t F all time C _{DRV} = 3300 pF 30 r m t F all time C _{DRV} = 3300 pF 20 500 m t FB Sol T_A = 25 °C 90 105 <t< td=""><td>OVP</td><td>Overvoltage protection</td><td>Rising edge</td><td>18</td><td></td><td>19.5</td><td>V</td></t<>	OVP	Overvoltage protection	Rising edge	18		19.5	V	
$\begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					60	100	μA	
$V_{OUT} = 10 V, FB = GND$ (switching) 1.3 2 rr Shutdown current EN = GND 5 10 µ 2VCC Charge pump ON V_{OUT} floating; $V_{CC} = 0.8 V$ 1.5 0 0 Driver section (DRV output) V_{DRVL} Low level voltage $I_{DRV} = 100 \text{ mA}$ 80 160 rr V_{DRVH} High level voltage $I_{DRV} = -100 \text{ mA}$ 120 240 rr V_{DRVH} High level voltage $I_{DRV} = -100 \text{ mA}$ 120 240 rr t_R Rise time $C_{DRV} = 3300 \text{ pF}$ 30 r r t_F Fall time $C_{DRV} = 3300 \text{ pF}$ 20 16 r FB Bias current $FB = 2 \text{ V}$ 20 500 n $T_{OFF(MIN)}$ Minimum Off time 1 1 µ $T_{ON(MAX)}$ Maximum On time 20 10 µ $V_{PWMOUTL}$ Low level voltage $I_{PWMOUT} = 100 \text{ mA}$ 200 400 <t< td=""><td>Ivout</td><td></td><td></td><td></td><td>800</td><td></td><td>μA</td></t<>	Ivout				800		μA	
2VCC Charge pump ON V_{OUT} floating; $V_{CC} = 0.8$ V 1.5 N Driver section (DRV output) V_{DRVL} Low level voltage $I_{DRV} = 100$ mA 80 160 m V_{DRVL} Low level voltage $I_{DRV} = 100$ mA 120 240 m V_{DRVH} High level voltage $I_{DRV} = -100$ mA 120 240 m t_R Rise time $C_{DRV} = 3300$ pF 30 160 m t_F Fall time $C_{DRV} = 3300$ pF 30 160 m FB FB Eedback voltage $T_A = 25 ^{\circ}C$ 90 105 116 m I_{FB} Bias current FB = 2 V 20 500 m $T_{OFF(MIN)}$ Minimum Off time 1 μ μ $T_{ON(MAX)}$ Maximum On time 200 μ μ PWM OUT section Ivon utage $I_{PWMOUT} = 100$ mA 200 400 m $V_{PWMOUTH}$ High level voltage $I_{PWMOUT} = 3300$ pF					1.3	2	mA	
V Image: Constraint of the sector of the sect		Shutdown current	EN = GND		5	10	μA	
V_{DRVL} Low level voltage $I_{DRV} = 100 \text{ mA}$ 80 160 m V_{DRVH} High level voltage $I_{DRV} = -100 \text{ mA}$ 120 240 m t_R Rise time $C_{DRV} = 3300 \text{ pF}$ 30 1 r t_F Fall time $C_{DRV} = 3300 \text{ pF}$ 20 1 r FB $Z00$ T T 116 m VFB Feedback voltage $T_A = 25 \text{ °C}$ 90 105 116 m IFB Bias current FB = 2 V 20 500 m ToFF(MIN) Minimum Off time 1 1 I I TOFF(MIN) Maximum On time 20 1 I I I PWM OUT section 1 I I I I I I I I VPWMOUTL Low level voltage IPWMOUT = 100 mA 200 400 m VPWMOUTH High level voltage IPWMOUT = -100 mA 250 <td>2VCC</td> <td>Charge pump ON</td> <td>V_{OUT} floating; $V_{CC} = 0.8 V$</td> <td></td> <td>1.5</td> <td></td> <td>V</td>	2VCC	Charge pump ON	V_{OUT} floating; $V_{CC} = 0.8 V$		1.5		V	
V_{DRVH} High level voltage I_{DRV} = -100 mA 120 240 m t_R Rise time C_{DRV} = 3300 pF 30 1 r t_F Fall time C_{DRV} = 3300 pF 20 1 r FB $P0$ 105 116 m I_{FB} Bias current FB = 2 V 20 500 m $T_{OFF(MIN)}$ Minimum Off time FB 2 1 μ $T_{ON(MAX)}$ Maximum On time 1 20 400 m $V_{PWMOUTL}$ Low level voltage $I_{PWMOUT} = 100$ mA 200 400 m $V_{PWMOUTH}$ High level voltage $I_{PWMOUT} = 3300$ pF 30 m m	Driver secti	ion (DRV output)					<u>.</u>	
t_R Rise time $C_{DRV} = 3300 \text{ pF}$ 30 r t_F Fall time $C_{DRV} = 3300 \text{ pF}$ 20 r FB $C_{DRV} = 3300 \text{ pF}$ 20 10 r V_{FB} Feedback voltage $T_A = 25 ^{\circ}C$ 90 105 116 rr I_{FB} Bias current $FB = 2 V$ 20 500 r Timing T $FB = 2 V$ 20 500 r $T_{OFF(MIN)}$ Minimum Off time 1 1 μ $T_{ON(MAX)}$ Maximum On time 20 1 μ $V_{PWMOUTL}$ Low level voltage $I_{PWMOUT} = 100 \text{mA}$ 200 400 rr $V_{PWMOUTH}$ High level voltage $I_{PWMOUT} = -100 \text{mA}$ 250 500 rr $V_{PWMOUTH}$ High level voltage $I_{PWMOUT} = -100 \text{mA}$ 250 500 rr	V _{DRVL}	Low level voltage	I _{DRV} = 100 mA		80	160	mV	
t_F Fall time $C_{DRV} = 3300 \text{ pF}$ 20 r FB V_{FB} Feedback voltage $T_A = 25 \text{ °C}$ 90 105 116 m I_{FB} Bias current FB = 2 V 20 500 n Timing ToFF(MIN) Minimum Off time 1 I I I TOFF(MIN) Maximum On time Image: Construction 200 400 I VPWM OUT section Low level voltage $I_{PWMOUT} = 100 \text{ mA}$ 200 400 I $V_{PWMOUTH}$ High level voltage $I_{PWMOUT} = -100 \text{ mA}$ 250 500 I $V_{PWMOUTH}$ High level voltage $I_{PWMOUT} = -3300 \text{ pF}$ 30 I I	V _{DRVH}	High level voltage	I _{DRV} = -100 mA		120	240	mV	
FB VFB Feedback voltage $T_A = 25 \ ^{\circ}C$ 90 105 116 m IFB Bias current FB = 2 V 20 500 m Timing TOFF(MIN) Minimum Off time 1 Image 1 Image T_ON(MAX) Maximum On time 20 20 500 m PWM OUT section 1 20 1 Image V _{PWMOUTL} Low level voltage I _{PWMOUT} = 100 mA 200 400 m V _{PWMOUTH} High level voltage I _{PWMOUT} = -100 mA 250 500 m t _r Rise time C _{PWMOUT} = 3300 pF 30 m m	t _R	Rise time	C _{DRV} = 3300 pF		30		ns	
VFB Feedback voltage T_A = 25 °C 90 105 116 m IFB Bias current FB = 2 V 20 500 m Timing Minimum Off time FB = 2 V 1 1 I I T_OFF(MIN) Minimum Off time 1 1 I <t< td=""><td>t_F</td><td>Fall time</td><td>C_{DRV} = 3300 pF</td><td></td><td>20</td><td></td><td>ns</td></t<>	t _F	Fall time	C _{DRV} = 3300 pF		20		ns	
Image:	FB							
Timing $T_{OFF(MIN)}$ Minimum Off time1 μ $T_{OFF(MIN)}$ Maximum On time20 μ $T_{ON(MAX)}$ Maximum On time200 μ PWM OUT section $V_{PWMOUTL}$ Low level voltage $I_{PWMOUT} = 100 \text{ mA}$ 200400m $V_{PWMOUTL}$ Low level voltage $I_{PWMOUT} = -100 \text{ mA}$ 250500m t_r Rise time $C_{PWMOUT} = 3300 \text{ pF}$ 30m	V _{FB}	Feedback voltage	T _A = 25 °C	90	105	116	mV	
T _{OFF(MIN)} Minimum Off time 1 1 1 T _{OFF(MIN)} Maximum Off time 20 1	I _{FB}	Bias current	FB = 2 V		20	500	nA	
TON(MAX)Maximum On time20 μ PWM OUT section200400 μ $V_{PWMOUTL}$ Low level voltage $I_{PWMOUT} = 100 \text{ mA}$ 200400 m $V_{PWMOUTH}$ High level voltage $I_{PWMOUT} = -100 \text{ mA}$ 250500 m t_r Rise time $C_{PWMOUT} = 3300 \text{ pF}$ 30 r	Timing			•				
PWM OUT section Image: Point section <thimage: point="" section<="" th=""> <thimage: point="" sec<="" td=""><td>T_{OFF(MIN)}</td><td>Minimum Off time</td><td></td><td></td><td>1</td><td></td><td>μs</td></thimage:></thimage:>	T _{OFF(MIN)}	Minimum Off time			1		μs	
VPWMOUTL Low level voltage IPWMOUT = 100 mA 200 400 m VPWMOUTH High level voltage IPWMOUT = - 100 mA 250 500 m t_r Rise time CPWMOUT = 3300 pF 30 m	T _{ON(MAX)}	Maximum On time			20		μs	
V_PWMOUTHHigh level voltage $I_{PWMOUT} = -100 \text{ mA}$ 250500m t_r Rise time $C_{PWMOUT} = 3300 \text{ pF}$ 30r	PWM OUT	section						
t _r Rise time C _{PWMOUT} = 3300 pF 30 r	V _{PWMOUTL}	Low level voltage	I _{PWMOUT} = 100 mA		200	400	mV	
	V _{PWMOUTH}	High level voltage	I _{PWMOUT} = - 100 mA		250	500	mV	
t _f Fall time C _{PWMOUT} = 3300 pF 20 r	t _r	Rise time	C _{PWMOUT} = 3300 pF		30		ns	
	t _f	Fall time	C _{PWMOUT} = 3300 pF		20		ns	

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
SENSE					•	
V _{SENSE MAX}	Maximum current sense threshold		70	100	130	mV
ISENSE	Bias current	V _{SENSE} = 20 V		10	20	μA
EN/PWM se	ction					
V _{IL}	Low level threshold	V _{CC} = 0.8 V			0.3	V
V _{IL}	Low level threshold	V _{CC} = 3.6 V			0.4	V
V _{IH}	High level threshold	V _{CC} = 0.8 V	0.8			V
V _{IH}	High level threshold	V _{CC} = 3.6 V	1.2			V
I _{EN/PWM}	EN/PWM pin current	EN/PWM = 3.6 V		2		μA
I _{EN/PWM}	EN/PWM pin current	EN/PWM = 5 V		5		μA
+ 5 V regula	tor					
V5	Output voltage	V _{OUT} = 6 V; I5 = 10 mA	4.8	5	5.2	V
$\Delta V5/\Delta V_{OUT}$	Line regulation	6 V < V _{OUT} < 18 V; I5 = 10 mA		0.02		%/V
$\Delta V5$	Load regulation	0 < I5 < 10 mA V _{OUT} = 18 V	0.02	0.01		%/mA
V _{DROPOUT}	Dropout voltage	l5 = 10 mA		20		mV
I _{CC}	Short circuit current	V _{OUT} = 18 V; V5 = 0 V		140		mA

Table 7. Electrical characteristics (continued)

5 Typical performance characteristics

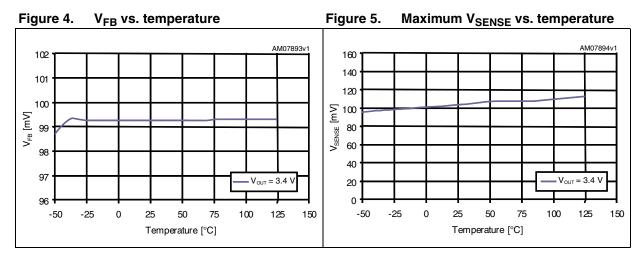
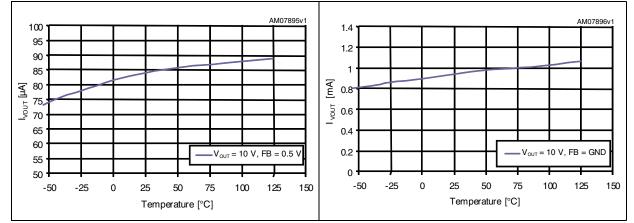
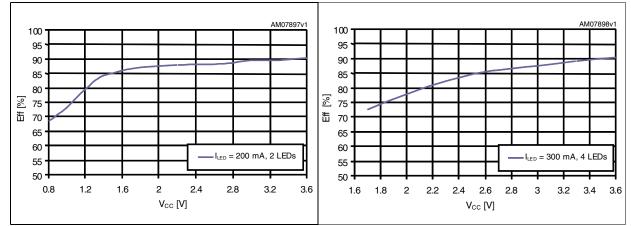




Figure 7. I_{OUT} vs. temperature FB = GND

STLDC08

Figure 10. Startup timing and dimming I_{LED} vs. time, 2 LEDs

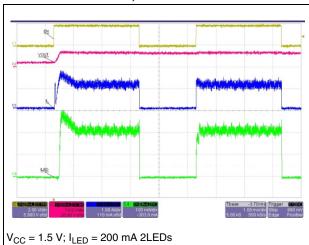


Figure 12. Startup timing and dimming I_{LED} vs. time, 4 LEDs

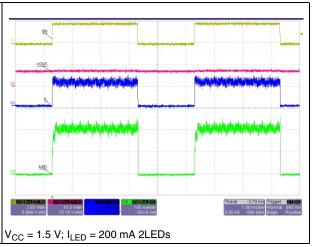


Figure 13. Dimming EN/PWM = 200 Hz, 4 LEDs

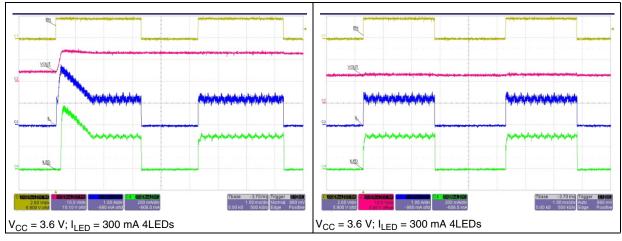
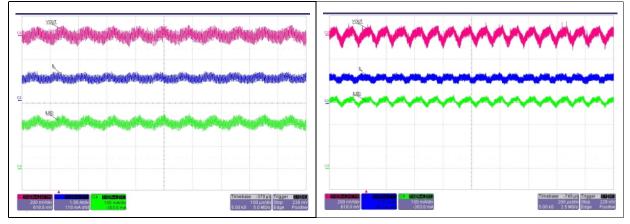
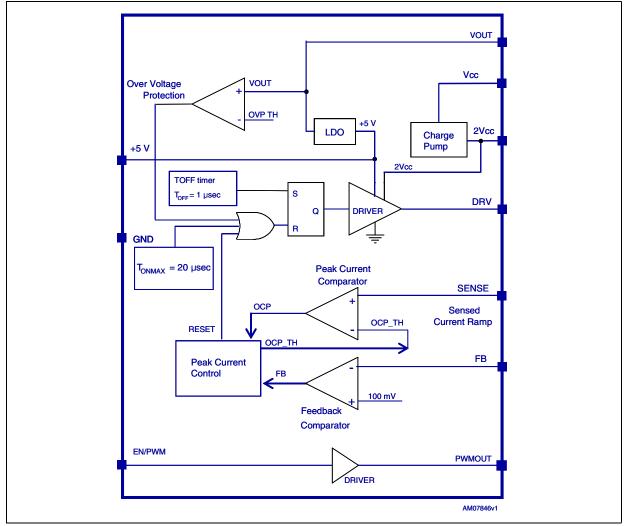



Figure 14. $V_{CC} = 1.5 V$; $I_{LED} = 200 \text{ mA}$, 2LEDs


Figure 15. V_{CC} = 3.6 V; I_{LED} = 300 mA, 4LEDs

57

6 Block diagram

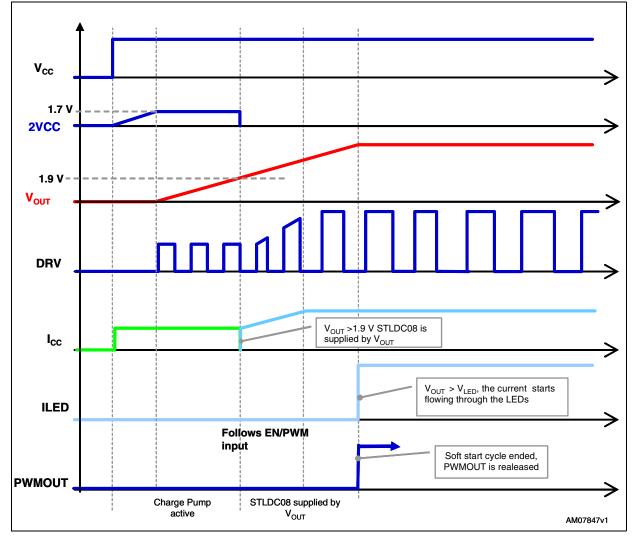
57

7 Detailed description

7.1 Main control loop

The STLDC08 is an LED driver step-up controller dedicated to handheld equipment, having a typical voltage ranging from 0.8 V to 1.5 V. The controller drives an N-channel Power MOSFET and implements a hysteretic current mode control with constant OFF time. Hysteretic operation eliminates the need for small signal control loop compensation. The control loop adapts the value of the inductor peak current as needed to deliver the desired current on the LED branch. The LED current is set by an external sense resistor R_{FB} inserted between the feedback pin (FB) and GND. When the current mode control system operates in continuous mode the control peak current is almost equivalent to the average current control.

7.2 Start up


At the startup phase, when the device is connected to the battery or when the EN pin is pulled high, the internal 2x charge pump starts to work, boosting the voltage on the $2V_{CC}$ pin. When the $2V_{CC}$ pin reaches 1.7 V a soft-start cycle begins. The external main MOSFET is switched on/off allowing the charging of the output capacitor.

If the optional PWMOUT MOSFET is used for the dimming operation, the PWMOUT pin is held low, further assuring that no current is flowing. The PWMOUT pin starts to follow the PWM input when the soft-start cycle is ended.

When V_{OUT} voltage exceeds 1.9 V, the chip starts drawing its supply current from V_{OUT} rather than from V_{CC} , the charge pump is turned off and the voltage on the $2V_{CC}$ pin goes to zero. When V_{OUT} exceeds the forward voltage of LED V_{LED} , the current starts flowing trough the LED, but, at this point, the voltage on the DRV pin is high enough to allow the main MOSFET to carry the necessary current.

7.3 Over voltage protection (OVP)

As with any current source, the output voltage rises when the output gets high impedance or is disconnected. To prevent the output voltage exceeding the maximum switch voltage rating of the main switch, an overvoltage protection circuit is integrated. As soon as the output voltage exceeds the OVP threshold, the converter stops switching and the output voltage drops. When the output voltage falls below the OVP threshold, the converter continues operation until the output voltage exceeds the OVP threshold again.

7.4 Enable/PWM

The enable pin allows disabling and enabling of the device as well as brightness control of the LEDs by applying a PWM signal. In order to avoid visible flicker, the frequency of the PWM signal should be higher than 120 Hz. Changing the PWM duty cycle therefore changes the LED brightness.

Doc ID 18476 Rev 1

7.5 Dimming

When PWMOUT goes to zero, the LED current immediately goes to zero and the energy stored in the coil is discharged on the output capacitor, causing an increase in the output voltage. As soon as the PWM goes back to high value, there is a big spike current on the LED. This could damage the LED itself. To avoid this, as soon as the input PWM signal goes to zero the controller immediately turns off the main switch (in order to discharge the coil current on the LED branch). In this way the PWM power is turned off with a delay in order to guarantee that FB goes high after PowerMOS turn off. After this delay, the flip-flop is ready to be set and the PWM power is turned off. In this condition the output voltage is slightly lower than the regulated value, but a current spike on the LED is avoided.

8 Application information

8.1 LED current programming

The LED current is set by an external resistor connected between the FB pin and GND. The following equation can be used to calculate the value of the R_{FB} resistor which guarantees the desired output current:

Equation 1

 $R_{FB} = \frac{0.1}{I_{LED}}$

The feedback signal V_{FB} is compared with the internal precision 100 mV voltage reference by the error amplifier. The internal reference has a guaranteed tolerance of 10 %. Tolerance of the sense resistor adds additional error to the output voltage. 1 % resistors are recommended.

8.2 Duty cycle

The controlled off-time architecture is a hysteretic mode control. Hysteretic operation eliminates the need for small signal control loop compensation. When the converter runs in continuous conduction mode (CCM) the controller adapts the T_{ON} time in order to obtain the duty cycle given by the following relationship:

Equation 2

$$D = 1 - \frac{V_{IN}}{V_{OUT} + V_D}$$

where V_O is the output voltage given by:

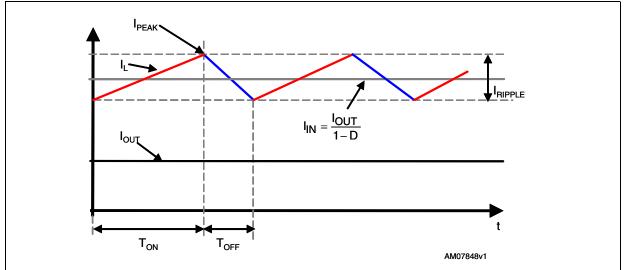
Equation 3

$$V_{O} = n \times V_{F(LED)} + V_{FB}$$

and VD is the forward voltage of the Schottky diode.

8.3 Inductor selection

As the hysteretic control scheme is inherently stable, the inductor value does not affect the stability of the regulator. The switching frequency, peak inductor current, and allowable ripple of the output current determine the value of the inductor.


LED manufacturers generally recommend a value for LED current ripple ranging from 5 % to 20 % of LED average current.

Doc ID 18476 Rev 1

As a first approximation we choose the inductor ripple current, I_L , equal to approximately 40 % of the output current. Higher ripple current allows for smaller inductors, but it also increases the output capacitance for a given LED current ripple requirement. Conversely, lower ripple current can be obtained increasing the value of the inductance, and this enables a reduction of the output capacitor value. This trade-off can be altered once standard inductance and capacitance values are chosen.

 I_L is determined by the input and output voltage, the value of the inductance, and T_{OFF}

The minimum value of inductance which guarantees the fixed inductor ripple current can be determined using the following equation:

Equation 4

$$L > \frac{(V_{OUT} + V_d - V_{INMIN})}{(\Delta I_L)} \times T_{OFF}$$

where V_d is the forward drop of the Schottky diode, I_L is the fixed inductor ripple current, and T_{OFF} is the constant OFF time.

The following equation shows the average inductor current as a function of the output current and duty cycle.

Equation 5

$$I_{L(AVG)} = \frac{I_{LED}}{1-D}$$

An inductor that can carry the maximum input DC current which occurs at the minimum input voltage should be chosen. The peak-to-peak ripple current is set by the inductance and a good starting point is to choose a ripple current of at least 40 % of its maximum value of the:

Doc ID 18476 Rev 1

Equation 6

$$\Delta I_{L} = 40\% \times I_{L(AVG)} = 40\% \times \frac{I_{LED}}{1 - D_{MAX}}$$

Where D_{MAX} is given by:

Equation 7

$$D_{MAX} = 1 - \frac{V_{IN(MIN)}}{V_{OUT} + V_D}$$

The value of the peak current on the inductor is given by the following equation:

Equation 8

$$I_{L(PK)} = I_{L(AVG)} + \frac{\Delta I_{L}}{2}$$

The minimum required saturation current of the inductor must be greater than $I_{L(\text{PK})}$ and can be expressed as follows:

Equation 9

$$I_{L(SAT)} > I_{L(PK)} = \frac{I_{OUT}}{1 - D_{MAX}} + \frac{\Delta I_{L}}{2}$$

The saturation current rating for the inductor should be checked at the maximum duty cycle and maximum output current.

8.4 Inductor peak current limit

The value of the inductor peak current limit can be programmed either by using a sense resistor or by using the RDSON of the main Power MOSFET.

The following equation gives the relationship between the peak current limit and the value of the sense resistor:

Equation 10

$$I_{IN(MAX)} = \frac{V_{SENSE}}{R_{SENSE}} = \frac{0.1}{R_{SENSE}}$$

The sense resistor value can be determined fixing the value of the inductor peak current limit equal to twice the value of the inductor peak current in steady-state conditions.

Equation 11

 $I_{IN(MAX)} = 2 \times I_{L(PK)}$

Equation 12

$$I_{L(PK)} = \frac{I_{LED}}{1 - D_{MAX}} + \frac{\Delta I_{L}}{2}$$

Equation 13

$$R_{SENSE} = \frac{0.1}{2 \times I_{L(PK)}}$$

If the $R_{DS (ON)}$ of the main Power MOSFET is used to sense the current on the inductor the following procedure must be performed to choose the Power MOSFET. During ON time, the SENSE comparator limits the voltage across the Power MOSFET to a nominal 100 mV. In that case, the maximum inductor current is given by the following relationships:

Equation 14

$$I_{L(MAX)} = \frac{V_{SENSE}}{R_{DS(ON)}} = \frac{100mV}{R_{DS(ON)}}$$

Equation 15

$$I_{L(MAX)} = 2 \times I_{L(PK)} = 2 \times \frac{I_{LED}}{1 - D_{MAX}} \times \left(1 + \frac{\Delta I_{L}}{2}\right)$$

Equation 16

$$R_{DS(ON)} < 0.1 \times \frac{1 - D_{MAX}}{2 \times I_{LED} \times \left(1 + \frac{\Delta I_{L}}{2}\right)}$$

8.5 Power MOSFET selection

A key parameter to take into account in the selection of the N-MOSFET is the maximum continuous drain current. As a safety design, it is important to choose a maximum continuous drain current equal to twice the maximum input current.

Figure 19. Current diagram ON state

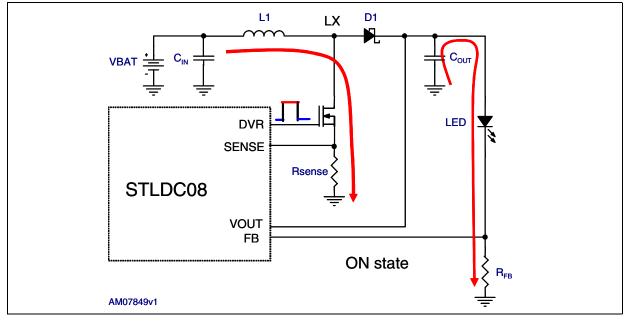
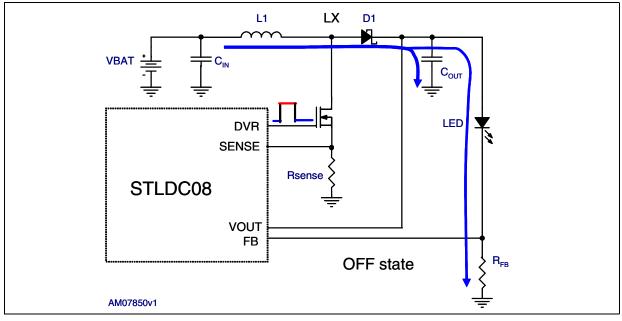



Figure 20. Current diagram OFF state

Another important parameter is the drain source breakdown voltage. During the ON state, the potential of the LX point is 0 V, while during the OFF state the potential of this point rises to the output voltage plus the forward voltage of the D1. Therefore, the absolute V_{DS} rating of the main switch must be greater than this voltage to prevent main switch damage.

8.6 Schottky diode selection

Schottky diodes, with their low forward voltage and fast recovery time, are the ideal choice to maximize efficiency. The output diode in a boost converter conducts current only when the power switch is OFF. The average current is equal to the output current and the peak current is equal to the peak inductor current. Ensure that the diode's average and peak current ratings exceed the average and peak inductor current, respectively. In addition, the diode's reverse breakdown voltage must exceed the regulator output voltage.

8.7 Input capacitor

The input capacitor of a boost converter is less critical than the output capacitor, due to the fact that the input current waveform is continuous. The input voltage source impedance determines the size of the input capacitor, which is typically in the range of 10 μ F to 100 μ F. A low ESR capacitor is recommended though it is not as critical as the output capacitor.

8.8 Output capacitor

For best output voltage filtering, a low ESR output capacitor is recommended. Ceramic capacitors have a low ESR value but tantalum capacitors can be used as well, depending on the application.

The output voltage ripple consists of two parts, the first is the product $I_{L(PK)}$ ESR, the second is caused by the charging and discharging process of the output capacitor.

Equation 17

$$\Delta V_{OUT} = \frac{TON \times I_{LED}}{C_{OUT}} + ESR \times I_{L(PK)}$$

where:

IL(PK) = Peak current

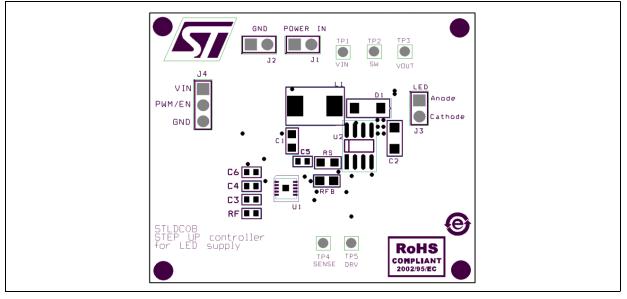
I_{LED} = Load current

C_{OUT} = Selected output capacitor

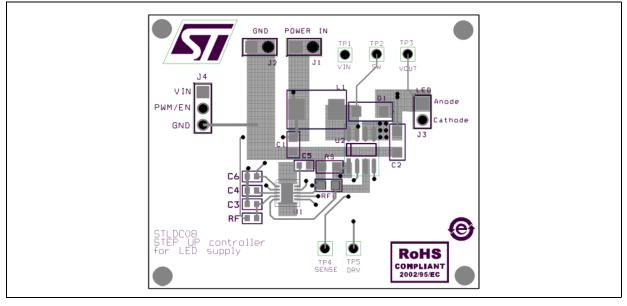
ESR = Output capacitor ESR value

9 Demonstration board

Figure 21. Electrical schematic


Table 8.	Bill of material optimized for	2 LEDs and $I_{LED} = 200 \text{ mA}$
----------	--------------------------------	---------------------------------------

Reference	Manufacturer	Part number	Value	Size	
C1	Murata	GRM21BR60J475	4.7 µF 6.3V	0805	
C2	Murata	GRM31CB31C106K	10 µF 16 V	1206	
C4	Murata	GRM188R70J103KA01B	10 nF, 6.3 V	0603	
C3, C5, C6	Murata	GRM188R61C105K	1 µF, 16 V	0603	
L	Coilcraft	LPS6235-103ML	10µH	6 mm x 6 mm	
M1,M2	STMicroelectronics	STS5DNF20V		SO-8	
D1	STMicroelectronics	STPS2L30		SMA	
Rfb			0.47 Ω	0805	
Rs			0.047 Ω	0805	
RF			0 Ω		



10 Layout suggestion

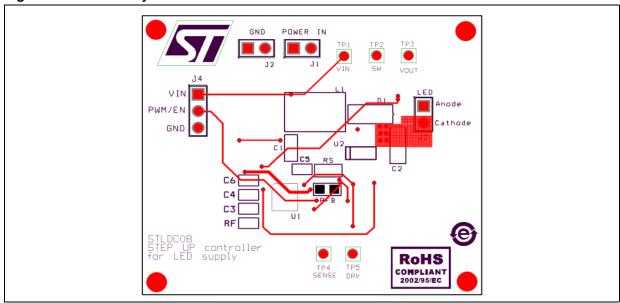
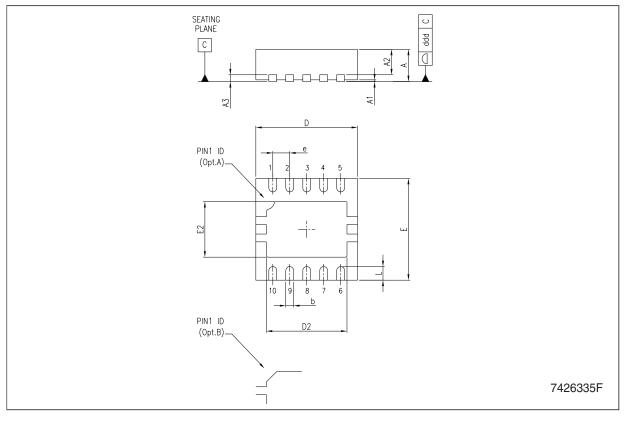

Figure 22. Assembly layer

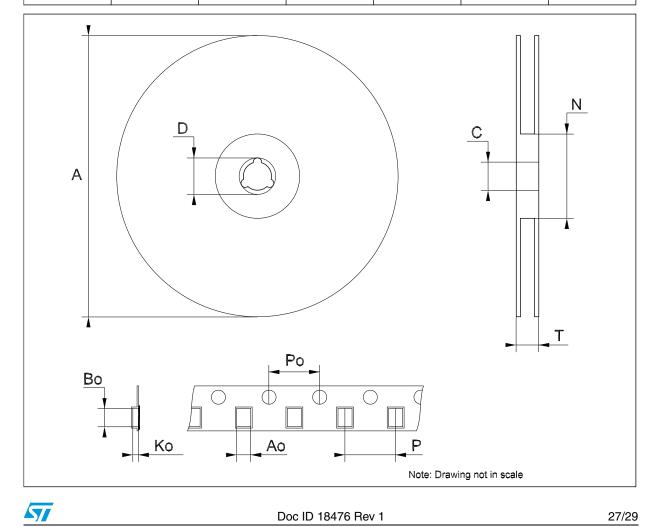
Figure 23. Top layer

Figure 24. Bottom layer



11 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.


DFN10 (3x3 mm) mechanical data						
Dim.	mm.			mils.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.80	0.90	1.00	31.5	35.4	39.4
A1		0.02	0.05		0.8	2.0
A2	0.55	0.65	0.80	21.7	25.6	31.5
A3		0.20			7.9	
b	0.18	0.25	0.30	7.1	9.8	11.8
D	2.85	3.00	3.15	112.2	118.1	124.0
D2	2.20			86.6		
E	2.85	3.00	3.15	112.2	118.1	124.0
E2	1.40		1.75	55.1		68.9
е		0.50			19.7	
L	0.30	0.40	0.50	11.8	15.7	19.7
ddd			0.08			3.1

Doc ID 18476 Rev 1

	Tape & reel QFNxx/DFNxx (3x3) mechanical data					
Dim	mm.			inch.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			180			7.087
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
Ν	60			2.362		
Т			14.4			0.567
Ao		3.3			0.130	
Во		3.3			0.130	
Ko		1.1			0.043	
Po		4			0.157	
Р		8			0.315	

Doc ID 18476 Rev 1

12 Revision history

Table 9. Document revision history

Date	Revision	Changes
22-Feb-2011	1	First release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 18476 Rev 1

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Display Drivers & Controllers category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

ICB2FL01G HV5812PJ-G-M904 TW8813-LB2-GR TW8811-PC2-GR MAX1839EEP+ TW9907-TA1-GR LX27901IDW SSD2828QN4 MAX7370ETG+ DLPA1000YFFT ICB2FL01GXUMA2 DLP2000FQC PAD1000YFFR S1D13746F01A600 FIN324CMLX AD8387JSVZ DLPC6421ZPC HV852K7-G HV859K7-G HV857K7-G DIO2133CT14 S1D13L03F00A100-40 TW2836-BA1-GR SSD2829QL9 MAX749CSA+T MAX4820EUP+T ICL7135CAI+ ICL7135CMH+D ICL7137CMH+D MAX14515AEWA+ MAX14521EETG+ MAX25221BATJ/V+ DS3882E+C S1D13748B00B100 S1D13A05B00B200 MAX3738ETG+T MAX14514ETD+ MAX4990ETD+T MAX8722CEEG+ MAX749CPA+ MAX8785AETI+ ICL7135CQI+ HV518PJ-G-M903 HV5812P-G HV5812PJ-G HV7224PG-G HV853K7-G HV860K7-G HV6810WG-G HV823LG-G