Programmable low voltage 1:10 differential LVDS clock driver

Features

- 100ps part-to part skew
- 50ps bank skew
- Differential design
- Meets LVDS spec. for driver outputs and receiver inputs
■ Reference voltage available output $V_{B B}$
- Low voltage V_{CC} range of 2.375 V to 2.625 V

■ High signalling rate capability (exceeds 622 MHz)

- Support open, short and terminated input failsafe (low output state)
- Programmable drivers power off control

Description

The STLVD111 is a low skew programmable 1 to 10 differential LVDS driver, designed for clock distribution. The select signal is fanned out to 10 identical differential outputs.
The STLVD111 is provided with a 11 bit shift register with a serial in and a Control Register. The purpose is to enable or power off each output clock channel and to select the clock input. The

STLVD111 is specifically designed, modelled and produced with low skew as the key goal. Optimal design and layout serve to minimize gate to gate skew within a device. The net result is a dependable guaranteed low skew device.

The STLVD111 can be used for high performance clock distribution in 2.5 V systems with LVDS levels. Designers can take advantage of the device's performance to distribute low skew clocks across the backplane or the board.

Order codes

Part number	Temperature range	Package	Packaging
STLVD111BFR	-40 to $85^{\circ} \mathrm{C}$	TQFP32 (Tape \& Reel)	2400 parts per reel

Contents

1 Pin configuration 3
2 Maximum ratings 5
3 Electrical characteristics 6
4 Specification of control register 8
4.1 Programmed mode (EN=1) 8
4.2 Standard mode (EN=0) 8
5 Diagram 10
6 Package mechanical data 15
7 Revision history 18

1 Pin configuration

Figure 1. Pin connections

Table 1. Pin description

Pin n°	Symbol	Name and function
1	CK	Control register clock
2	SI	Control register serial IN/CLK_SEL
3	CLK0	Differential input
4	CLKO	Differential input
5	$V_{B B}$	Output reference voltage
6	CLK1	Differential input
7	CLK1	Differential input
8	EN	Device enable/program
9	GND	Ground
10	Q9	Differential outputs
11	Q9	Differential outputs
12	Q8	Differential outputs
13	Q8	Differential outputs
14	Q7	Differential outputs
15	Q7	Differential outputs
16	V_{CC}	Supply voltage
17	Q6	Differential outputs
18	Q6	Differential outputs
19	Q5	Differential outputs
20	Q5	Differential outputs
21	Q4	Differential outputs
22	Q4	Differential outputs
23	Q3	Differential outputs
24	Q3	Differential outputs
25	GND	Ground
26	Q2	Differential outputs
27	Q2	Differential outputs
28	Q1	Differential outputs
29	Q1	Differential outputs
30	Q0	Differential outputs
31	Q0	Differential outputs
32	V_{CC}	Supply voltage

2 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	-0.3 to 2.8	V
$\mathrm{~V}_{1}$	Input voltage	-0.2 to $\left(\mathrm{V}_{\mathrm{CC}}+0.2\right)$	V
V_{O}	Output voltage	-0.2 to $\left(\mathrm{V}_{\mathrm{CC}}+0.2\right)$	V
$\mathrm{I}_{\mathrm{OSD}}$	Driver short circuit current	Continuous	
ESD	Electrostatic discharge $(\mathrm{HBM} 1.5 \mathrm{~K} \Omega, 100 \mathrm{pF})$	>2	KV

Note: \quad Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Recommended operating conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{CC}	Supply voltage	2.375		2.625	V
$\mathrm{~V}_{\mathrm{IC}}$	Receiver common mode input voltage	$0.5\left(\mathrm{~V}_{\mathrm{ID}}\right)$		$2-0.5\left(\mathrm{~V}_{\mathrm{ID}}\right)$	V
T_{A}	Operating free-air temperature range	-40		85	${ }^{\circ} \mathrm{C}$
T_{J}	Operating junction temperature	-40		105	${ }^{\circ} \mathrm{C}$

Table 4. Thermal data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\text {thJC }}$	Thermal resistance junction-case	13	${ }^{\circ} \mathrm{C} / \mathrm{W}$

3 Electrical characteristics

Table 5. Driver electrical characteristics $\left(T_{A}=-40\right.$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{C C}=2.5 \mathrm{~V} \pm 5 \%$, unless otherwise specified Note: 1, 2)

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
V_{OD}	Output differential voltage (Figure 4.)	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	400	500	600	mV
$\Delta \mathrm{V}_{\mathrm{OD}}$	V_{OD} magnitude change				30	mV
V_{OS}	Offset voltage	$-40 \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	1.05	1.15	1.25	V
$\Delta \mathrm{~V}_{\mathrm{OS}}$	V_{OS} magnitude change				30	V
I_{OS}	Output short circuit current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		15	30	mA
		$\mathrm{~V}_{\mathrm{OD}}=0 \mathrm{~V}$		7	15	

Note: 1 All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
2 All typical values are given for $V_{C C}=2.5 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise stated

Table 6. Receiver electrical characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$, unless otherwise specified Note: 1, 2)

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\mathrm{IDH}}$	Input threshold high				100	mV
$\mathrm{V}_{\mathrm{IDL}}$	Input threshold low		-100			mV
I_{IN}	Input current	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$		42	100	
	$\mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}_{\mathrm{CC}}$			2	10	

Note: 1 All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
2 All typical values are given for $V_{C C}=2.5 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise stated

Table 7. Driver electrical characteristics $\left(T_{A}=-40\right.$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$, unless otherwise specified Note: 1, 2)

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
V_{BB}	Output reference voltage	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	1.15	1.25	1.35	V
$\mathrm{I}_{\mathrm{CCD}}$	Power supply current	All driver enabled and loaded		125	160	mA
C_{IN}	Input capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ to V_{CC}		5		pF
$\mathrm{C}_{\mathrm{OUT}}$	Output capacitance			5		pF
V_{IH}	Logic input high threshold	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Logic input low threshold	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$			0.8	V
I_{I}	Logic input current	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND			± 10	$\mu \mathrm{~A}$

Note: 1 All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified
2 All typical values are given for $V_{C C}=2.5 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise stated
Table 8. LVDS timing characteristics $\left(T_{A}=-40\right.$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$, unless otherwise specified)

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
${ }_{\text {t }}^{\text {LLH, }}$, ${ }_{\text {THHL }}$	Transition time	$\mathrm{R}_{\mathrm{L}}=100 \Omega \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF},$ Figure 7., Figure 8.)		220	300	ps
$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	Propagation delay time	(Figure 7., Figure 8.)		2	2.5	ns
$\mathrm{f}_{\text {MAX }}$	Maximum input frequency		700	900		MHz
${ }^{\text {tskew }}$	Bank skew	(Figure 3.)		50		ps
	Part to part skew	(Figure 4.)		100		
	Pulse skew	(Figure 5.)		50		

Table 9. Control register timing characteristics $\left(T_{A}=-40\right.$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$, unless otherwise specified)

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
$\mathrm{f}_{\mathrm{MAX}}$	Maximum frequency of shift register	(Figure 9.)	100	150		MHz
t_{s}	Clock to SI setup time	(Figure 9.)			2	ns
t_{h}	Clock to SI hold time	(Figure 9.)			1.5	ns
$\mathrm{t}_{\mathrm{rem}}$	Enable to clock removal time	(Figure 9.)			1.5	ns
t_{W}	Minimum clock pulse width	(Figure 9.)	3			ns

4 Specification of control register

The STLVD111 is provided with a 11 bit shift register with a Serial In and a Control Register. The purpose is to enable or power of each output clock channel and to select the clock input. The STLVD111 provides two working modality:

4.1 Programmed mode (EN=1)

The shift register have a serial input to load the working configuration. Once the configuration is loaded with 11 clock pulse, another clock pulse load the configuration into the control register. The first bit on the serial input line enables the outputs Q9 and Q9, the second bit enables the outputs Q8 and Q8 and so on. The last bit is the clock selection bit. To restart the configuration of the shift register a reset of the state machine must be done with a clock pulse on CK and the EN set to Low. The control register shift register can be configured on time after each reset.

4.2 Standard mode (EN=0)

In Standard Mode the STLVD111 isn't programmable, all the clock outputs are enabled. The LVDS clock input is selected from Clock 0 or Clock 1 with the SI pin as shown in the Truth Table below.

Table 10. Truth table of state machine inputs

EN	SI	CK	Output
L	L	X	All output enabled, Clock 0 selected, control register disabled
L	H	X	All output enabled, Clock 1 selected, control register disabled
H	L	-	First stage stores "L", other stages store the data of previous stage
H	H	\checkmark	First stage stores "H", other stages store the data of previous stage
L	X	-	Reset of the state machine, shift register and control register

Table 11. Serial input sequence

BIT\#10	BIT\#9	BIT\#8	BIT\#7	BIT\#6	BIT\#5	BIT\#4	BIT\#3	BIT\#2	BIT\#1	BIT\#0
CLK_SEL	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9

Table 12. Truth table of the control register

BIT\#10	BIT\#(0-9)	Qn(0-9)
L	H	Clock 0
H	H	Clock 1
X	L	Qn Output Disabled

Table 13. Truth table

CK	EN	SI	CLK 0	$\overline{\text { CLK } 0}$	CLK 1	$\overline{\text { CLK } 1}$	Q (0-9)	$\overline{\mathbf{Q}}(0-9)$
L	L	L	L	H	X	X	L	H
L	L	L	H	L	X	X	H	L
L	L	L	Open	Open	X	X	L	H
L	L	H	X	X	L	H	L	H
L	L	H	X	X	H	L	H	L
L	L	H	X	X	Open	Open	L	H
All drivers enable								

5 Diagram

Figure 2. Logic diagram

Figure 3. Bank skew - $\mathrm{t}_{\text {sk(b) }}{ }^{(1)}$

1. BANKSKEW is the magnitude of the time difference between outputs with a single driving input terminal

Figure 4. Part to part skew - $\mathrm{t}_{\text {sk(PP) }}{ }^{(1)}$

1. PART TO PART SKEW is the magnitude of the difference in propagation delay times between any specific terminals of two devices when both devices operate with the same input signals, the same supply voltages, and the same temperature, and have identical packages and test circuits.

Figure 5. Pulse skew - $\mathrm{t}_{\mathrm{sk}(\mathrm{P})}{ }^{(1)}$

1. PULSE SKEW is the magnitude of the time difference between the high to low and low to high propagation delay times at an output.

Figure 6. Voltage and current definition

Figure 7. Test circuit and voltage definition for the differential output signal

Figure 8. Differential receiver to drive propagation delay and drive transition time waveforms

Figure 9. Set-Up, hold and the removal time, maximum frequency, minimum pulse width waveforms

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK ${ }^{\circledR}$ packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

TQFP32 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.6			0.063
A1	0.05		0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
B	0.30	0.37	0.45	0.012	0.015	0.018
C	0.09		0.20	0.0035		0.0079
D		9.00			0.354	
D1		7.00			0.276	
D3		5.60			0.220	
e		9.80			0.031	
E		7.00			0.276	
E1		5.60			0.220	
E3		0.60	0.75	0.018	0.024	0.030
L	0.45	1.00			0.039	
L1		3.5°				
K	0°					

0060661/C

Tape \& Reel TQFP32 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60		22.4			0.882
T			9.7	0.374		0.382
Ao	9.5		9.7	0.374		0.382
Bo	9.5		2.3	0.083		0.091
Ko	2.1		4.1	0.153		0.161
Po	3.9		12.1	0.468		0.476
P	11.9					

7 Revision history

Table 14. Revision history

Date	Revision	Changes
30-May-2007	8	Order codes has been updated and the document has been reformatted.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
8501BYLF 854S015CKI-01LF 8T33FS6221EPGI NB7V72MMNHTBG 4RCD0124KC0ATG P9090-0NLGI8 SY100EP33VKG ISPPAC-CLK5520V-01T100C8P 854110AKILF 83210AYLF NB6VQ572MMNG 4RCD0229KB1ATG PI6C4931502-04LIEX 8SLVD1212ANLGI PI6C4931504-04LIEX AD9508BCPZ-REEL7 NBA3N200SDR2G 8T79S308NLGI SI53315-B-GMR HMC6832ALP5LETR 49FCT805BTPYG RS232-S5 542MILFT 6ES7390-1AF30-0AA0 74FCT3807PYGI SY89873LMG 853S9252BKILF 8P34S1102NLGI8 8T53S111NLGI CDCVF2505IDRQ1 CDCUA877ZQLT CDCE913QPWRQ1 CDC2516DGGR 8SLVP2104ANBGI/W 8S73034AGILF LV5609LP-E 5T9950PFGI STCD2400F35F 74FCT3807QGI8 74FCT3807PYGI8 MC100EL32DG MAX9312ETJ MAX9389EHJ+ MAX9312ECJ NB7L572MNR4G NB7L585RMNG 5V41068APGGI8 98ULPA877AHLF 83948AYI-147LFT 49FCT3805AQG8

