STMEC001

Power interface switch for ExpressCard ${ }^{\text {TM }}$

Features

- Compliant with PC Card ${ }^{\text {TM }}$ standard for ExpressCard
■ 3-channel power interface switch
■ Built-in under-voltage lockout (UVLO) circuit
- Ultra-low standby-mode current
- Additional 5 V or 12 V power supply not required
■ High reliability ensured with integrated overcurrent, thermal and undervoltage protection circuitries applied to each voltage rail
■ Soft start function for non-rush current
■ Ultra-low standby-mode current for power saving

■ Ultra-low ON resistance for fast switching

Description

The STMEC001 is an ExpressCard power interface switch which provides the complete power management solution required by the ExpressCard specification.

The STMEC001 consists of 3 internal switches distributing 3.3 V, 3.3 $\mathrm{V}_{\mathrm{AUX}}$, and 1.5 V to the ExpressCard socket without the need of additional charge pump or external switches.

The STMEC001 ExpressCard power switch is ideal for notebook computers, desktop computers, personal digital assistants (PDA), or other handheld devices implementing the ExpressCard schematic.

Table 1. Device summary

Order code	Package	Packing
STMEC001QTR	QFN16	Tape and reel
STMEC001ATTR	TSSOP20	Tape and reel

Contents

1 Pin description 3
1.1 Pin functional description 5
2 Logic diagram 6
3 Maximum ratings 8
4 Power states 9
4.1 Power states description 9
5 Electrical characteristics 10
6 Logic characteristics 13
7 Switching times 14
8 Package mechanical data 16
9 Revision history 18

1
 Pin description

Figure 1. STMEC001 pin configuration (top view)

Table 2. Pin assignments

Pin		Name	Type	Description
QFN16	TSSOP20			
15	1	/SYSRST	I	System Reset input - active low, logic level signal, internal $150 \mathrm{~K} \Omega$ pull-up
16	2	/SHDN	I	Shutdown input - active low, logic level signal, internal $150 \mathrm{~K} \Omega$ pull-down
1	3	/STBY	1	Standby input - active low, logic level signal, internal $150 \mathrm{~K} \Omega$ pull-down
2	4	VIN_3.3V	I	3.3 V input for VO_3.3V
-	5	VIN_3.3V	I	3.3 V input for VO _3.3V
3	6	VO_3.3V	0	Switched output that delivers $0 \mathrm{~V}, 3.3 \mathrm{~V}$ or high impedance to card
4	7	VO_3.3V	0	Switched output that deli, is is $\cap \mathrm{V}, 3.3 \mathrm{~V}$ or high impedance to carr!
5	8	/PERST	0	A logic level pewer çood to slot (delayed)
-	9	NC	-	No conn $=1+$ icn
6	10	GND	-	Grcun y
7	11	/CPUSB	1	C..d present input for USB cards, internal $150 \mathrm{~K} \Omega$ pull-up
8	12	/CPPE	I	Card present input for PCI ExpressCard, internal $150 \mathrm{~K} \Omega$ pull-up
9	13	Vo_:.5V	0	Switched output that delivers $0 \mathrm{~V}, 1.5 \mathrm{~V}$ or high impedance to card
-		VO_1.5V	0	Switched output that delivers $0 \mathrm{~V}, 1.5 \mathrm{~V}$ or high impedance to card
10	15	VIN_1.5V	1	1.5 V input for 1.5 V out
.	16	VIN_1.5V	1	1.5 V input for $1.5 \mathrm{~V}_{\text {OUT }}$
11	17	VO_3.3V VAUX	0	Switched output that delivers $0 \mathrm{~V}, 3.3 \mathrm{~V}$ or high impedance to card
12	18	VIN_3.3V $\mathrm{V}_{\text {AUX }}$	1	3.3 V input for VO_3.3V VAUX and chip power
13	19	RCLKEN	I/O	Reference clock enable signal. As an output, a logic level power good to host for slot (open drain). As an input, if kept inactive by the host, prevents /PERST from being de-asserted, internal $150 \mathrm{~K} \Omega$ pull-up
14	20	/OC	0	Over-current status output for slot (open drain)

1.1 Pin functional description

Table 3. Pin detailed descriptions

Symbol	Description
CPPE	A logic low level on this input indicates that the card present supports PCI Express functions. This input pin connects to the $3.3 \mathrm{~V}_{\mathrm{AUX}}$ input through a $150 \mathrm{k} \Omega$ internal pull up. When inserted, the card physically connects this input to ground if the card supports PCI Express functions.
CPUSB	A logic low level on this input indicates that the card present supports USB functions. The input pin CPUSB connects to the $3.3 \mathrm{~V}_{\text {AUX }}$ input through a $150 \mathrm{k} \Omega$ internal pull up. When inserted, the card physically connects CPUSB to ground if the card supports USE functions.
SHDN	When asserted (logic low), this input instructs the STMEC001 to turn off a.! 'ol'age outputs and the discharge FETs at the 3 outputs are activated.
STBY	When asserted (logic low), this input places the power switch in St.anciby Mode by turning off the 3.3 V and 1.5 V power switches and keeping the $2.3^{1 / \mathrm{Ac}^{\prime} \mathrm{v}}$ switch on.
RCLKEN	This pin serves as both an input and an output. On powe up, the power switch keeps this signal at a low state as long as any of the outpui ju, $\mathfrak{j} \boldsymbol{f}$ r rails are out of their tolerance range. Once all output power rails are within t t rance, the power switch releases RCLKEN allowing it to transition to a higr. ctat † t (internally pulled up to $3.3 \mathrm{~V}_{\text {AUX }}$). The transition of RCLKEN from a low to a 'liot, ctate starts an internal timer for the purpose of de-asserting /PERST. As an irpul Riciven can be kept low to delay the start of the /PERST internal timer. RCLK EN (a_{n} be used by the host system to enable a clock driver.
PERST	On power up, this output remains asserted. Once all power rails are within tolerance, RCLKEN is asserts, and /PERST is de-asserted after a time delay. On power down, this output is ass $\epsilon^{*} t \in \lambda$ wiranever any of the power rails drop below their voltage tolerance.
SYSRST	This input is dr ven by the host system and directly affects /PERST. Asserting /SYSRST (logir ǐval iow) forces /PERST to assert.
OC	T. ae JC pin is an open drain output for over-current indication. Output does not turn off c'uring over-current condition. The output voltage decreases as the output current exceeds over-current limit. Only if the temperature increases above the limit the output is turned off completely. Over-current in one output does not affect the other outputs.

2 Logic diagram

Figure 2. STMEC001 block diagram

Figure 3. STMEC001 typical application

3 Maximum ratings

Stressing the device above the rating listed in the "Absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Absolute maximum ratings ${ }^{(1)}$

Symbol	Parameter	Value	Unit
V_{1}	Input voltage	$\mathrm{V}_{\text {I }}\left(3.3 \mathrm{~V}_{\text {IN }}\right)-0.3$ to 4.6	V
		$\mathrm{V}_{\text {I }}\left(1.5 \mathrm{~V}_{\text {IN }}\right)-0.3$ to 4.6	\because
		$\mathrm{V}_{\mathrm{l}}\left(3.3 \mathrm{~V}_{\text {AUX }}\right)-0.3$ to 4.5	V
I_{0}	Output current	$\mathrm{V}_{\mathrm{I}}\left(3.3 \mathrm{~V}_{\mathrm{IN}}\right)$ internal'.y $1 . \mathrm{mi} . \mathrm{ed}$	
		$\mathrm{V}_{1}\left(1.5 \mathrm{~V}_{\text {IN }}\right)$ nte rnally limited	
		$\mathrm{V}_{1}\left(33 \mathrm{~V}_{\Delta^{\prime}, \gamma}\right)$ internally limited	
T_{OP}	Operating junction temperature, T_{J} (max to be calc. at worst case PD at $85^{\circ} \mathrm{C}$ ambient)	$-40 \text { to } 120$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature rang	-55 to 150	${ }^{\circ} \mathrm{C}$

1. Absolute maximum ratings are those va'ues above which damage to the device may occur. Functional operation under these conditions に not implied. All voltages are referenced to GND.

4 Power states

The STMEC001 operates in a number of states, as described in the following table:
Table 5. Power states

Voltage inputs			Logic states				Outputs			Mode
$3.3 \mathrm{~V}_{\text {AUX }}$	3.3 V	1.5 V	/SHDN	/CPUSB	/CPPE	ISTBY	$3.3 \mathrm{~V}_{\text {AUX }}$	3.3 V	1.5 V	
ON	X	X	1	1	1	X	GND	GND	GND	No card
ON	X	X	0	X	X	X	GND	GND	GND	Shutdown
ON	ON	ON	1	0	X	1	ON	ON	ON	USE e, rable
ON	ON	ON	1	X	0	1	ON	ON	ON	PE enable
ON	ON	ON	1	X	X	0	ON	OFF	OF:	Standby
OFF	X	X	X	X	X	X	OFF	OF.	UFF	OFF

4.1 Power states description

- No card mode: when no card is inserted, ε nc' ct reast $3.3 \mathrm{~V}_{\text {AUX }}$ is available, all outputs are grounded
- Shutdown mode: when /SHDN is aiscited, and at least $3.3 \mathrm{~V}_{\text {AUX }}$ is available all outputs are grounded
- USB/PW enable mode: when all 3 inputs are available, detection of cartd insertion turns on all 3 outputs
- VIN_3.3 V. \IIN_3.3V $\mathrm{V}_{\text {AUX }}$ and VIN_1.5 V are present at the USB/PW enable input of the $\mathrm{L} \cdot \mathrm{V} \mathrm{ve}$ - switch prior to a card being inserted. Power to the card is based on the stite of /CPUSB and /CPPE (see table). $_{\text {I }}$
- 1 he vard is present and VIN_1.5 V or/and VIN_3.3 V is removed from the input of the power switch; $\mathrm{VIN} _3.3 \mathrm{~V}_{\text {AUX }}$ will still be provided to the card, $\mathrm{VIN} _1.5$ and VIN_3.3 V will be disabled (see table). If power to VIN_1.5 V and VIN_3.3 V is restored, output to the card will be restored.
- Prior to the insertion of a card, VIN_3.3 $\mathrm{V}_{\text {AUX }}$ is available, VIN_3.3 V and VIN_1.5 V are not available; no power is made available to the card. If VIN_1.5 V and VIN_3.3 V are made available at the input of the power switch after the card is inserted, both VO 3.3 V and $\mathrm{VO}_{1} 1.5 \mathrm{~V}$ are made available to the card.
- Standby mode: when all 3 supplies are available and /STBY is asserted. Only 3.3 $\mathrm{V}_{\mathrm{AUX}}$ output is on.
- OFF mode: if $\mathrm{V}_{\text {AUX }}$ is off, all outputs are off. When $\mathrm{VIN} _3.3 \mathrm{~V}_{\text {AUX }}$ is not present, VIN_1.5 V or/and VIN_3.3 V must not be present.

5 Electrical characteristics

Table 6. Recommended operating conditions

Symbol	Parameter	Value	Unit
V_{1}	Input voltage: $\mathrm{V}_{1}\left(3.3 \mathrm{~V}_{\text {IN }}\right)$ is required for its respective functions	3.0 to 3.6	V
	Input voltage: $\mathrm{V}_{\mathrm{l}}\left(1.5 \mathrm{~V}_{\text {IN }}\right)$ is required for its respective functions	1.35 to 1.65	V
	Input voltage: $\mathrm{V}_{\mathrm{l}}\left(3.3 \mathrm{~V}_{\text {AUX }}\right)$ is required for all circuit operations	3.0 to 3.6	V
lo	Output current: $\mathrm{I}_{\mathrm{O}}(3.3 \mathrm{~V})$ at $\mathrm{T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$	1.3 (max.)	A
	Output current: $\mathrm{I}_{\mathrm{O}}(1.5 \mathrm{~V})$ at $\mathrm{T}_{J}=10{ }^{\circ} \mathrm{C}$	650 (max.)	mA
	Output current: $\mathrm{I}_{0}(\mathrm{AuxV})$ at $\mathrm{T}_{J}=100^{\circ} \mathrm{C}$	275 (max.)	miA
T_{OP}	Operating junction temperature, T_{J} (max to be calc. at worst case PD at $85^{\circ} \mathrm{C}$ ambient)	100	${ }^{\circ} \mathrm{C}$

Table 7. Electrical characteristics

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
$\begin{gathered} \mathrm{RSW}^{(1)} \\ \text { TSSOP20 } \end{gathered}$	VIN_3.3 V to VO_3.3 V	$\mathrm{I}=1300 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		53	64	$\mathrm{m} \Omega$
		$\mathrm{I}=1300 \mathrm{~mA}, \mathrm{~T}_{\mathrm{i}}-100{ }^{\circ} \mathrm{C}$			80	
	VIN_1.5 V to VO_1.5 V	$\mathrm{I}=650 \mathrm{~mA} \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		70	88	
		$\mathrm{I}=550 \mathrm{~mA}, \mathrm{~T}_{J}=100^{\circ} \mathrm{C}$			105	
	VIN_3.3V $\mathrm{V}_{\text {AUX }}$ to $\mathrm{VO}_{-} \mathrm{V}_{\text {AUY }}$.	$1-7.5 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$		140	170	
		$\mathrm{I}=275 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$			210	
$\begin{aligned} & \mathrm{R}_{\mathrm{Sw}}{ }^{(1)} \\ & \text { QFN16 } \end{aligned}$	VIN_3.3 V to VO_J.? V	$\mathrm{I}=1300 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$		53	64	$\mathrm{m} \Omega$
		$\mathrm{I}=1300 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$			80	
	V'N - 5 V to VO_1.5 V	$\mathrm{I}=650 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		80	92	
		$\mathrm{I}=650 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$			115	
	VIN_3.3V $\mathrm{A}_{\text {AUX }}$ to $\mathrm{VO} \mathrm{V}_{\text {AUX }}$	$\mathrm{I}=275 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		170	192	
		$\mathrm{I}=275 \mathrm{~mA}, \mathrm{~T}_{J}=100^{\circ} \mathrm{C}$			230	
R_{O}	$\mathrm{R}_{\mathrm{O}}(3.3 \mathrm{~V})$ discharge resistance	I discharge $=1 \mathrm{~mA}$	0.1		0.5	k Ω
	$\mathrm{R}_{\mathrm{O}}(1.5 \mathrm{~V})$ discharge resistance	I discharge $=1 \mathrm{~mA}$	0.1		0.5	
	$\mathrm{R}_{\mathrm{O}}(1.5 \mathrm{~V})$ discharge resistance	I discharge $=1 \mathrm{~mA}$	0.1		0.5	

Table 7. Electrical characteristics (continued)
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}\left(\mathrm{V}_{\text {IN }} 3.3 \mathrm{~V}\right)=\mathrm{V}_{\mathrm{I}}\left(\mathrm{V}_{\text {IN }} 3.3 \mathrm{~V}_{\mathrm{AUX}}\right)=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}\left(\mathrm{V}_{\text {IN }} 1.5 \mathrm{~V}\right)=1.5 \mathrm{~V}$

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
los	$\mathrm{I}_{\mathrm{O}}(3.3 \mathrm{~V})$ limit (limit is the steady state value)	TJ $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ Output powered into a short	1.3		2.5	A
	$\mathrm{I}_{\mathrm{O}}(1.5 \mathrm{~V})$ limit	$\mathrm{T}_{\mathrm{J}}-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ Output powered into a short	650		1300	mA
	$\mathrm{I}_{\mathrm{O}}\left(\mathrm{V}_{\mathrm{AUX}}\right)$ limit	$\mathrm{T}_{\mathrm{J}}-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ Output powered into a short	275		660	

1. Switch resistance (in production - probe testing at 1.3 A . Final test at 1.0 A and apply guard band)

Table 8. Power switching

1. All high side switches are in $\mathrm{Hi}-\mathrm{Z}$ state, $\mathrm{V}_{\mathrm{O}}(\mathrm{AUX})=\mathrm{V}_{\mathrm{O}}(3.3 \mathrm{~V})=3.3 \mathrm{~V}$, $\mathrm{Vo}(1.5 \mathrm{~V})=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}-40^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}$

Table 9. Undervoltage lockout (UVLO)

Symbol	Parameter	Test condition	Min	Typ	Max	Unit
UVLO	VIN_3.3 UVLO	VIN_3.3 level, below which VIN_3.3 and VIN_1.5 switches are off	2.6		2.9	V
	VIN_1.5 UVLO	VIN_1.5 level, below which VIN_3.3 and VIN_1.5 switches are off	1		1.25	V
	VIN_3.3 VAUX UVLO	VIN_3.3VAUX level, below which sets the device into OFF state	2.6		2.9	V
	UVLO hysteresis			100		mV

6 Logic characteristics

Table 10. Logic states

Logic transition	Condition	Min	Typ	Max	Unit
Logic input voltage	High level	2.0			V
	Low level			0.8	
PERST\# assertion threshold of output voltage	3.3 V output falling	2.7		3.0	V
	AUX output falling	2.7		3.0	
	1.5 V output falling	1.2		1.35	
PERST\# assertion delay from output voltage invalid	Output falling below threshold			-07	ns
PERST\# de-assertion from output voltage valid	Output rising above threshold	4	心	20	ms
PERST\# assertion delay from SYSRST\#	STSRST asserted or de-asserted			500	ns
RCLKEN assertion delay from output voltage valid	Output rising above threshold	-		100	$\mu \mathrm{s}$
OC\# output low voltage	$\mathrm{l}_{\mathrm{OC}}=2 \mathrm{~mA}$			0.4	V
OC\# leakage current	$\mathrm{V}_{\mathrm{OC}}=3.6 \mathrm{~V}$			1	$\mu \mathrm{A}$
OC\# deglitch	Falling into cr ou of an over-current condition	6		20	$\mu \mathrm{s}$

Table 11. ESD protections

Pin	Condition	ESD tolerance	Unit
$\mathrm{V}_{\text {OUT }}$ (3.3 V, 1.5 V, AlIV)	Versus GND \& supply	6	kV
All other pins (except \{CLKEN)	Versus GND \& supply	2	
RCLKEN	Versus GND	2	
RCLK -1	Versus supply	1	

7 Switching times

Table 12. Switching characteristics

Symbol		Parameter	Condition	Min	Typ	Max	Unit
t_{R}	Output rise time	VIN_3.3V to VO_3.3V	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(3.3 \mathrm{~V})}=0.1 \mu \mathrm{~F} \\ & \mathrm{I}_{\mathrm{O}(3.3 \mathrm{~V})}=0 \mathrm{~A} \end{aligned}$	0.1		3	ms
		VIN_3.3V ${ }_{\text {AUX }}$ to VO_V ${ }_{\text {AUX }}$	$\begin{aligned} & \mathrm{l}_{\mathrm{L}(\mathrm{AUX})}=0.1 \mu \mathrm{~F} \\ & \mathrm{I}_{(\mathrm{AUX})}=0 \mathrm{~A} \end{aligned}$	0.1		3	
		VIN_1.5V to VO_1.5V	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(1.5 \mathrm{~V})}=0.1 \mu \mathrm{~F} \\ & \mathrm{I}_{\mathrm{O}(1.5 \mathrm{~V})}=0 \mathrm{~A} \end{aligned}$	0.1		3	
		VIN_3.3V to VO_3.3V	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(3.3 \mathrm{~V})}=100 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{L}}=\mathrm{VO} _3.3 \mathrm{~V} / 1.0 \mathrm{~A} \end{aligned}$	0.1		6	
		VIN_3.3V ${ }_{\text {AUX }}$ to $\mathrm{VO}_{-} \mathrm{V}_{\text {AUX }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(3.3 \mathrm{~V})}=100 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{L}}=\mathrm{VO}_{\mathrm{C}} \mathrm{~V}_{\mathrm{AUX}} / 0.25 \mathrm{~A} \end{aligned}$	01		6	
		VIN_1.5V to VO_1.5V	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(3.3 \mathrm{~V})}=100 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{L}}=\mathrm{VO}_{-} 1.5 \mathrm{~V} / 05 \mathrm{~A} \end{aligned}$	0.1		6	
${ }^{\text {F }}$	Output fall time (/CPUSB and /CPPE inactive)	VIN_3.3V to VO_3.3V	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(3.3 \mathrm{~V})}=0.1 \mathrm{\mu} . \\ & \mathrm{I}_{\mathrm{o}(3.3 \mathrm{~V})}=\mathrm{U} . \mathrm{A}^{-} \end{aligned}$	10		150	$\mu \mathrm{s}$
		VIN_3.3V ${ }_{\text {AUX }}$ to $\mathrm{VO}_{-} \mathrm{V}_{\text {AUX }}$	$\begin{aligned} & C(A, Y=0.1 \mu \mathrm{~F} \\ & \partial(A U X)=0 \mathrm{~A} \end{aligned}$	10		150	
		VIN_1.5V to VO_1.5V	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(1.5 \mathrm{~V})}=0.1 \mu \mathrm{~F} \\ & \mathrm{I}_{\mathrm{O}(1.5 \mathrm{~V})}=0 \mathrm{~A} \end{aligned}$	10		150	
		VIN_3.3V +o VO 3.3 V	$\mathrm{C}_{\mathrm{L}(3.3 \mathrm{~V})}=20 \mu \mathrm{~F}$, no load	2.0		30.0	ms
		VIN 3.3 'AUX to VO_V ${ }_{\text {AUX }}$	$\mathrm{C}_{\mathrm{L}(\mathrm{AUX})}=20 \mu \mathrm{~F}$, no load	2.0		30.0	
		し心1.5V to VO_1.5V	$\mathrm{C}_{\mathrm{L}(1.5 \mathrm{~V})}=20 \mu \mathrm{~F}$, no load	2.0		30.0	
$\mathrm{t}_{\text {SHDN }}$	Output fall time (/SHDN active)	VIN_3.3V to VO_3.3V	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(3.3 \mathrm{~V})}=0.1 \mu \mathrm{~F} \\ & \mathrm{I}_{\mathrm{o}(3.3 \mathrm{~V})}=0 \mathrm{~A} \end{aligned}$	10		80	$\mu \mathrm{S}$
		VIN_3.3V ${ }_{\text {AUX }}$ to VO_V ${ }_{\text {AUX }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(\mathrm{AUX})}=0.1 \mu \mathrm{~F} \\ & \mathrm{I}_{\mathrm{O}(\mathrm{AUX})}=0 \mathrm{~A} \end{aligned}$	10		80	
		VIN_1.5V to VO_1.5V	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(1.5 \mathrm{~V})}=0.1 \mu \mathrm{~F} \\ & \mathrm{I}_{\mathrm{O}(1.5 \mathrm{~V})}=0 \mathrm{~A} \end{aligned}$	10		80	
		VIN_3.3V to VO_3.3V	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(3.3 \mathrm{~V})}=100 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{L}}=\mathrm{VO} 3.3 \mathrm{~V} / 1.0 \mathrm{~A} \end{aligned}$	0.1		5.0	ms
		VIN_3.3V ${ }_{\text {AUX }}$ to VO_V ${ }_{\text {AUX }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(3.3 \mathrm{~V})}=100 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{L}}=\mathrm{VO}_{-} \mathrm{V}_{\mathrm{AUX}} / 0.25 \mathrm{~A} \end{aligned}$	0.1		5.0	
		VIN_1.5V to VO_1.5V	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(3.3 \mathrm{~V})}=100 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{L}}=\mathrm{VO}_{-} 1.5 \mathrm{~V} / 0.5 \mathrm{~A} \end{aligned}$	0.1		5.0	

Table 12. Switching characteristics (continued)

Symbol		Parameter	Condition	Min	Typ	Max	Unit
$t_{\text {PD }}$	Propagation delay	VIN_3.3V to VO_3.3V	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(3.3 \mathrm{~V})}=0.1 \mu \mathrm{~F} \\ & \mathrm{I}_{\mathrm{O}(3.3 \mathrm{~V})}=0 \mathrm{~A} \end{aligned}$	0.02		1.0	ms
		VIN_3.3V $\mathrm{V}_{\text {AUX }}$ to VO _ $\mathrm{V}_{\text {AUX }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(\mathrm{AUX})}=0.1 \mu \mathrm{~F}, \\ & \mathrm{I}_{\mathrm{O}(\mathrm{AUX})}=0 \mathrm{~A} \end{aligned}$	0.02		1.0	
		VIN_1.5V to VO_1.5V	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(1.5 \mathrm{~V})}=0.1 \mu \mathrm{~F} \\ & \mathrm{l}_{\mathrm{o}(1.5 \mathrm{~V})}=0 \mathrm{~A} \end{aligned}$	0.02		1.0	
		VIN_3.3V to VO_3.3V	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(3.3 \mathrm{~V})}=100 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{L}}=\mathrm{VO} _3.3 \mathrm{~V} / 1.0 \mathrm{~A} \end{aligned}$	0.05		1.0	
		VIN_3.3V $\mathrm{V}_{\text {AUX }}$ to $\mathrm{VO} \mathrm{V}^{\text {AUX }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(3.3 \mathrm{~V})}=100 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{L}}=\mathrm{VO}_{-} \mathrm{V}_{\mathrm{AUX}} / 0.25 \mathrm{~A} \end{aligned}$	0.05		1.5	
		VIN_1.5V to VO_1.5V	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(3.3 \mathrm{~V})}=100 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{L}}=\mathrm{VO} _1.5 \mathrm{~V} / 0.5 \mathrm{~A} \end{aligned}$	0.0		1.0	

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK ${ }^{\circledR}$ packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 4. QFN16 (3 $\times 3 \mathrm{~mm}$) package outline

1. Drawing not to scale.

Table 13. $n f N \cdot 6(3 \times 3 \mathrm{~mm})$ mechanical data

Symbol	Millimeters		
	Min	Typ	Max
A	0.80	0.90	1.00
A1		0.02	0.05
A3	0.18	0.20	
b		0.25	0.30
D	1.55	3.00	
D2		1.70	1.80
E		1.55	0.50
E2		0.20	
e		0.30	0.80
K		0.09	
L			

Figure 5. TSSOP20 package outline

1. Drawing not to scale.

Table 14. TSSOP20 mechanical duit?

Symbol	Millimeters		
	Min	Typ	Max
A			1.2
A1	0.05		0.15
f.́c	0.8	1	1.05
b	0.19		0.30
c	0.09		0.20
D	6.4	6.5	6.6
E	6.2	6.4	6.6
E1	4.3	4.4	4.48
e		0.65 BSC	
K	0°		8°
L	0.45	0.60	0.75

$9 \quad$ Revision history

Table 15. Document revision history

Date	Revision	Change
02-Aug-2006	1	First release
08-Feb-2007	2	Replaced TSSOP24 package information with QFN16
18-Oct-2007	3	Modified title, added R_{SW} values for QFN16 inTable 7 on page 10, small text changes, layout restructure, content reworked to improve readability in Section 4.1: Power states description on page 9, modified Figure 2: STMEC001 block diagram on page 6
17-Apr-2008	4	Modified: Figure 2 and Table 2: Pin assignments on page $4 \mathrm{a}_{1} \approx$ Table 5: Power states on page 9, minor text changes.
14-Nov-2008	5	Modified: Figure 1: STMEC001 pin configuration two rew) on page 3, Table 2: Pin assignments on page 4, removen "'רci.es" colums from Table 13: QFN16 (3x 3 mm) mechanirnl caı cn page 16 and Table 14: TSSOP20 mechanical data vr, pajge $17 .^{\text {p }}$.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidic riss (Si") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and servi, os de ,cribed herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services dtsorbed herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property ig its is yranted under this document. If any part of this document refers to any third party products or services it shall not be deemed a 'ce. l ? grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a war, ar, y covering the use in any manner whatsoever of such third party products or services or any intellectual property contained ther ${ }^{2}$ In.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/nR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNFS: F Fn A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT LF , NY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN $V_{1} \mathfrak{I}$ ING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OF w.II:ANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PROD Jし'こ JR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PR Jr E^{\prime} 'T\ CR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE '`JED iN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of $\smile \top$, rr, $u^{\prime} \downarrow$ cis with provisions different from the statements and/or technical features set forth in this document shall immediately void any war ${ }^{\prime}{ }^{+}{ }^{\dagger}$ y granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liabily o: Si.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
633888R AZ7500EP-E1 NCP1012AP133G NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81101BMNTXG NCP81205MNTXG HV9123NG-G-M934 CAT874-80ULGT3 SJE6600 SG3845DM NCP1216P133G NCP1236DD65R2G NCP1247BD100R2G NCP1250BP65G NCP4204MNTXG NCP6132AMNR2G NCP81172MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UC3845ADM UBA2051C IR35201MTRPBF MAX8778ETJ+ MAX16933ATIR/V+ NCP1010AP130G NCP1063AD100R2G NCP1216AP133G NCP1217AP100G NCP1230P133G MAX1715EEI+T MAX1715EEI MAX17024ETD+T NTBV30N20T4G NCP1015ST65T3G NCP1060AD100R2G NCP1216AP65G NCP1217P100G $\underline{\text { NCP1217P65G NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NTC6600NF NVTS4409NT1G TC105333ECTTR }}$ NCP1230P100G

