Enhanced five-channel PMOS load switches

Datasheet - production data

Features

- Five-channel PMOS switches
- Input/output voltage range: $1.05 \mathrm{~V}-5.5 \mathrm{~V}$
- $V_{D D}$ voltage range: $1.8 \mathrm{~V}-3.6 \mathrm{~V}$
- Maximum output rated current: 100 mA
- Low Ron: $120 \mathrm{~m} \Omega$ typ. at 1.8 V
- Built-in soft-start feature for each channel programmable by ${ }^{2} \mathrm{C}$ ($1,2,4$, and 8 ms)
- Enable/disable function of each load switch programmed by ${ }^{2} \mathrm{C}$
- Enable pin for $I^{2} \mathrm{C}$ block
- Ultra low quiescent current: $2.4 \mu \mathrm{~A}$ max.
- Output discharge circuitry
- ESD tolerance: 2 kV HBM
- Temperature range: -40 up to $70^{\circ} \mathrm{C}$
- Package: UFQFPN, $3 \times 3 \mathrm{~mm}, 16 \mathrm{~L}$
- Lead-free and Halogen-free device
- $V_{D D}$ UVLO circuit for enhanced application robustness

Applications

- Smart phones
- Tablets
- Mobile device accessories
- Wearable devices

Description

The STMLS05 device is an array of five load switches, all featuring a soft-start turn-on to protect from high inrush current. The soft-start timing can be programmed by the $I^{2} \mathrm{C}$. Each channel may be turned ON/OFF by the $\mathrm{I}^{2} \mathrm{C}$ block. The $I^{2} \mathrm{C}$ block may be disabled through the EN_I2C pin.
In addition, channel 0 can be programmed ON or OFF by the EN_SWO pin. The device is available in a UFQFPN package ($3 \times 3 \mathrm{~mm}$) and its temperature range is -40 to $70^{\circ} \mathrm{C}$.

Table 1: Device summary

Order code	$\mathbf{I}^{2} \mathrm{C}$ base address	Package marking
STMLS05ACQTR	$0 \times 5 \mathrm{C}$	AS5C

Contents
1 Functional block diagram 3
2 Pin settings 4
2.1 Pin connections 4
2.2 Pin description 4
3 Maximum ratings 5
3.1 Absolute maximum ratings 5
3.2 Recommended operating conditions 5
4 Electrical specifications 6
$5 \quad \mathrm{I}^{2} \mathrm{C}$ register map 9
6 Typical operating characteristics 10
7 Application information 11
7.1 Power-up sequence and UVLO functionality 11
7.2 Output discharge circuitry 11
$7.3 \quad$ EN_I2C (${ }^{2} \mathrm{C}$ block enable) functionality 11
$7.4 \quad I^{2} \mathrm{C}$ register auto-incrementation 11
8 Package information 12
8.1 UFQFPN, 3x3mm, 16 L package information 13
9 Revision history 15

1

Functional block diagram
Figure 1: Functional block diagram

2 Pin settings

2.1 Pin connections

Figure 2: UFQFPN, $3 \times 3 \mathrm{~mm}, 16 \mathrm{~L}$ package (top view)

2.2 Pin description

Table 2: UFQFPN $3 \times 3 \mathrm{~mm}$, 16L pin description

Pin number	Name	Function
1	$\mathrm{V}_{1 \times 1} 1$	Power input
2	Vin2	
3	Vin3	
4	Vin4	
5	GND	Ground
6	SCL	$1^{2} \mathrm{C}$ serial clock
7	SDA	$1^{2} \mathrm{C}$ serial data
8	EN_SW0	Enable input - switch 0
9	OUT4	Power output
10	OUT3	
11	OUT2	
12	OUT1	
13	OUTO	
14	EN_I2C	Enable input - $I^{2} \mathrm{C}$ block
15	VDD	Supply voltage
16	Vin0	Power input

3 Maximum ratings

Stressing the device beyond the rating listed in Table 3: "Absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in Table 4: "Recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

3.1 Absolute maximum ratings

Table 3: Absolute maximum ratings

Symbol	Parameter	Value	Unit
$V_{\text {DD }}$	Supply voltage range	-0.3 to 6.0	V
Vin, Vout	I/O voltage	-0.3 to 6.0	
lout	Maximum continuous output current	500	mA
TJ	Junction operating temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Operating temperature range	-40 to 70	
Tstg	Storage temperature	-55 to 150	
ESD	ESD protection level (all pins, HBM)	2	kV
$V_{\text {SDA }}$	I/O voltage	-0.3 to 6.0	V
V SCL	I/O voltage	-0.3 to 6.0	
VEn_12C	I/O voltage	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
VEN_SW0	I/O voltage	-0.3 to VDD +0.3	

3.2 Recommended operating conditions

Table 4: Recommended operating conditions

Symbol	Parameter	Value			Unit
		Min.	Typ.	Max.	
VDD	Supply voltage	1.8		3.6	V
VIN	Input voltage range	1.05		5.5	
Vout	Output voltage range	0		VIN	
lout	Continuous output current	-		100	mA
VIL	Input logic low voltage (EN_I2C, EN_SW0, SDA, SCL)	-		0.3 VDD	V
V_{1}	Input logic high voltage (EN_I2C, EN_SW0, SDA, SCL)	0.7 VDD		VDD	

4 Electrical specifications

In the table below, typical values are valid for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.
Table 5: Electrical characteristics

Symbol	Parameter	Test condition	Value			Unit
			Min.	Typ.	Max.	
IDD	Quiescent current, switches ON, $\mathrm{I}^{2} \mathrm{C}$ OFF	lout $=0 \mathrm{~mA}$	-	1	24	$\mu \mathrm{A}$
	Quiescent current, switches ON, $\mathrm{I}^{2} \mathrm{C}$ ON	lout $=0 \mathrm{~mA}$, no clock on SCL	-	-	2.4	
Idd(OFF)	OFF-state supply current	Vout open	-	0.04	1	
1 lnx (LEAKAGE)	OFF-state switch leakage current per switch	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1.05 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	0.01	10	
		$\begin{aligned} & \mathrm{V} / \mathrm{IN}=1.8 \mathrm{~V}, \mathrm{~V} \text { out }=0 \mathrm{~V}, \\ & \mathrm{VDD}=1.8 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	0.04	12	
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {Out }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	0.07	20	
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	0.2	25	
linx(LEAKAGE) ${ }^{(1)}$	OFF-state switch leakage current per switch	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {Out floating, }} \\ & \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	2	75	nA
			-	4	200	
VUVLO	VDD UVLO threshold ${ }^{(2)}$		0.9	1.35	1.6	V
Ron	ON resistance	$\mathrm{V}_{\text {IN }}=1.05 \mathrm{~V}$, lout $=100 \mathrm{~mA}$	-	150	180	$m \Omega$
		$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$, lout $=100 \mathrm{~mA}$	-	120	140	
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$, lout $=100 \mathrm{~mA}$	-	110	130	
		$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$, lout $=100 \mathrm{~mA}$	-	108	125	
toIs	Output discharge pulse width		1.7	4.1	8.3	ms
tD_ON ${ }^{(3)}$	Delay between discharge switch turn-off and main switch turn-on to prevent cross-conduction	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}, \\ & \mathrm{R}_{\mathrm{L}} \text { disconnected, } \mathrm{ST} 2 _\mathrm{x}=0 \text {, } \\ & \mathrm{DEx}=1, \mathrm{DTx}=1 \end{aligned}$	100	-	-	ns
tD_OFF ${ }^{(3)}$	Delay between main switch turn-off and discharge switch turn-on to prevent cross-conduction		220	-	-	
Switching characteristics $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$						
ton	Turn-on time: from switch enabled to Vout above 90% of V_{IN}	No soft-start	-	80	-	$\mu \mathrm{s}$
	Turn-on time: from switch enabled to Vout above 90% of Vin	Soft-start $=1 \mathrm{~ms}$	0.5	1	1.15	ms
	Turn-on time: from switch enabled to Vout above 90% of V_{IN}	Soft-start $=2 \mathrm{~ms}$	1.2	2	2.25	
	Turn-on time: from switch enabled to Vout above 90% of Vin	Soft-start $=4 \mathrm{~ms}$	2.3	4	4.3	

Symbol	Parameter	Test condition	Value			Unit
			Min.	Typ.	Max.	
ton	Turn-on time: from switch enabled to Vout above 90% of $V_{\text {IN }}$	Soft-start $=8 \mathrm{~ms}$	4.35	8	10	ms
tofF ${ }^{(1)}$	Turn-off time: from switch disabled to Vout below 0.6 V	Discharge enabled (DEx = 1)	-	1.1	1.4	
		Discharge disabled (DEx = 0)	-	8.4	-	
		Discharge enabled ($\mathrm{DEx}=1$), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$, R_{L} disconnected	-	1.3	1.7	

Notes:

${ }^{(1)}$ Based on characterization data. Not tested in production.
${ }^{(2)}$ Minimum VDD fall time for proper UVLO circuit functionality is $20 \mu \mathrm{~s}$.
${ }^{(3)}$ Guaranteed by design. Not tested in production.

Figure 3: Timing waveform

Table 6: $I^{2} \mathrm{C}$ timing - $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $70^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{F}_{\text {scl }}$	SCL clock frequency	-	0	-	400	kHz
thd, sta	Hold time (repeated) START condition		0.6		-	$\mu \mathrm{s}$
tow	LOW period of the SCL clock		1.3		-	
thigh	HIGH period of the SCL clock		0.6		-	
tsu,dat	Setup time for repeated START condition		0.6		-	
thd, dat	Data hold time		0		0.9	
$\mathrm{t}_{\text {su, dat }}$	Data setup time		100		-	ns
tr	Rise time of both SDA and SCL signals		$20+0.1 C_{b}$		300	
tf_{f}	Fall time of both SDA and SCL signals		$20+0.1 \mathrm{Cb}^{\text {b }}$		300	
tsu,sto	Setup time for STOP condition		0.6		-	$\mu \mathrm{s}$
tbuf	Bus free time between a STOP and START condition		1.3		-	
Cb_{b}	Capacitive load for each bus line		-		400	pF

Figure 4: $\mathrm{I}^{2} \mathrm{C}$ timing diagram

$5 \quad I^{2} \mathrm{C}$ register map

$I^{2} \mathrm{C}$ base address

The ${ }^{2} \mathrm{C}$ base address for writing to the device is $0 \times 5 \mathrm{C}$ (01011100). For reading from device it is $0 \times 5 \mathrm{D}(01011101)$.

Table 7: ${ }^{2}{ }^{2} \mathrm{C}$ register map

Address	Register purpose	b7	b6	b5	b4	b3	b2	b1	b0
0×00	Channel 0 setup	-	-	-	DT0	DE0	ST2_0	ST1_0	ST0_0
0×01	Channel 1 setup	-	-	-	DT1	DE1	ST2_1	ST1_1	ST0_1
0×02	Channel 2 setup	-	-	-	DT2	DE2	ST2_2	ST1_2	ST0_2
0×03	Channel 3 setup	-	-	-	DT3	DE3	ST2_3	ST1_3	ST0_3
0×04	Channel 4 setup	-	-	-	DT4	DE4	ST2_4	ST1_4	ST0_4
0×05	Channel enable	-	-	-	EN_4	EN_3	EN_2	EN_1	EN_0

Table 8: $1^{2} \mathrm{C}$ register bit functions

Bit	Value	Function	Power-up value
$E N _x^{(1)}$	0	Channel x disabled (off)	0
	1	Channel x enabled (on)	
DEx (discharge enable on channel x)	0	No discharge after channel x disable	1
	1	Discharge enabled	
DTx (discharge type on channel x)	0	Discharge during tois	0
	1	Permanent discharge when channel x is disabled	
ST2_x	0	No soft-start time for channel x	0
	1	Soft-start for channel x defined by ST1_x, ST0_x bits	
ST1_x, ST0_x	0, 0	Soft-start 1 ms	0
	0, 1	Soft-start 2 ms	
	1, 0	Soft-start 4 ms	
	1, 1	Soft-start 8 ms	

Notes:

${ }^{(1)}$ The state-of-channel 0 is the OR function between the EN_0 bit and EN_SW0 pin

6 Typical operating characteristics

Figure 5: Output discharge circuitry performance ($\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)

Figure 6: Ron vs. Vin (lout = 100 mA)

7 Application information

7.1 Power-up sequence and UVLO functionality

The STMLS05 device is powered from the $V_{D D}$ pin. Thus, for full device functionality a valid $V_{D D}$ must be present.

The V_{DD} UVLO circuit enhances application robustness. If the V_{DD} is below the UVLO threshold, all main switches and discharge circuits are off and all registers are reset to their power-up values even if the $\mathrm{V}_{\mathbb{I}}$ is applied.

For proper UVLO functionality, the $V_{D D}$ rise and fall time must be longer than 20 microseconds. In most applications this is ensured automatically otherwise a simple R-C element in the $V_{D D}$ line (see Figure 7: "R-C element in VDD line") ensures proper functionality. This R-C element also provides an excellent Vod decoupling.

7.2 Output discharge circuitry

Internal output discharge circuits are activated at the moment of the main MOSFET turnoff. They are kept active for a period of 1.7 ms min. tdis, or they are kept active permanently for the whole period when the main switch is turned off, based on the DTx bit.
Output discharge can also be disabled by setting the DEx bit to 0 .
It is guaranteed that the main MOSFET and the discharge circuit are never turned on at the same time. The to_on delay shown in applies and the discharge circuit is disabled if the main MOSFET is enabled during the tois pulse.

7.3 EN_I2C (${ }^{2} \mathrm{C}$ block enable) functionality

The EN_I2C pin disables $I^{2} \mathrm{C}$ communication. During the $\mathrm{I}^{2} \mathrm{C}$ block disable period (EN_I2C $=0)$ the last state-of-power switches are kept and $I^{2} \mathrm{C}$ commands are ignored. $I^{2} \mathrm{C}$ communication is not influenced.

$7.4 \quad I^{2} \mathrm{C}$ register auto-incrementation

The STMLS05 device supports automatic incrementation of the $I^{2} \mathrm{C}$ register addresses. However, the automatic shift from the highest register address to the lowest address is not supported.

Figure 7: R-C element in VDD line

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

8.1 UFQFPN, $3 \times 3 \mathrm{~mm}$, 16 L package information

Figure 8: UFQFPN, $3 \times 3 \mathrm{~mm}, 16 \mathrm{~L}$ package outline

1. Dimensioning and tolerancing conform to ASME Y14.5-2009.
2. The location of the terminal no. 1 identifier is within the hatched area.
3. Coplanarity applies to the terminals and all other bottom surface metalization.

Table 9: UFQFPN, $3 \times 3 \mathrm{~mm}, 16 \mathrm{~L}$ mechanical data

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Nom.	Max.	Min.	Nom.	Max.
A	0.45	0.50	0.55	0.018	0.020	0.022
A1	0.00	0.02	0.05	0.000	0.001	0.002
$\mathrm{b}^{(1)}$	0.18	0.25	0.30	0.007	0.010	0.012
D	3.00 BSC			0.118 BSC		
E	3.00 BSC			0.118 BSC		
e	0.5			0.020		
L	0.30	0.40	0.50	0.012	0.016	0.020
aaa			0.05			0.002
bbb			0.10			0.004
ccc			0.05			0.002
ddd			0.05			0.002
eee			0.05			0.002
$\mathrm{N}{ }^{(2)}$	16			0.630		
ND ${ }^{(3)}$	4			0.157		
NE ${ }^{(3)}$	4			0.157		

Notes:

${ }^{(1)}$ Dimension b applies to the metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, dimension b should not be measured in that radius area.
${ }^{(2)} \mathrm{N}$ is the total number of terminals.
${ }^{(3)} \mathrm{ND}$ and NE refer to the number of terminals on the D and E side respectively.

$9 \quad$ Revision history

Table 10: Document revision history

Date	Revision	Changes
13-Dec-2016	1	Initial release
10-Feb-2017	2	Typo corrections

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG MAX14919ATP+ MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC2505-1YM MIC94305YMT-TR MIC94085YFT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR

