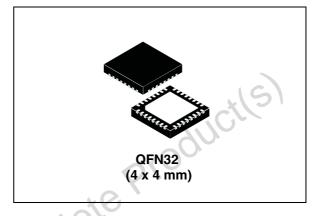


STMPE16M31PX


S-Touch[®] 16-channel touchkey controller with proximity sensing

Features

- Up to 16 capacitive sensor inputs
- Independent and configurable automatic calibration on all channels
- Proximity sensing capability for over 3 cm distance
- 15 fF resolution, 512 steps with 30 pF autotuning
- Up to 30 pF external reference capacitor
- PWM and GPIO:
 - Up to 16 general purpose inputs/outputs
 - 8 independent PWM controllers, up to 16 PWM outputs
 - 12 mA sourcing/sinking on GPIO for LED driving (at 3.3 V $V_{\text{IO}})$
 - Maximum source/sink current 120 mA
- Operating voltage:
 - 1.65 1.95 V (V_{CC}, internally supplied)
 - 2.7-5.5 V(V_{IO})
- Low operating current: 300 μA in active mode, 40 μA in sleep mode and 5 μA in hibernate mode
- I²C interface (up to 400 kHz). I²C is 3.3 V tolerant
- 8 kV HBM ESD protection on all sensing pins

Applications

- Multimedia bars in notebook computers
- Portable media players and game consoles
- Mobile phones and smartphones

Description

The STMPE16M31PX capacitive touchkey controllers offer highly versatile and flexible capacitive sensing capabilities in one single chip.

The devices integrate up to 16 capacitive sensing channels which are highly sensitive and noise tolerant. Eight independent PWM controllers allow to control up to 16 LEDs with brightness control, ramping and blinking capabilities. The I^2C interface supports up to 400 kHz communication with the system host. A very wide dynamic range allows most applications to work without hardware tuning.

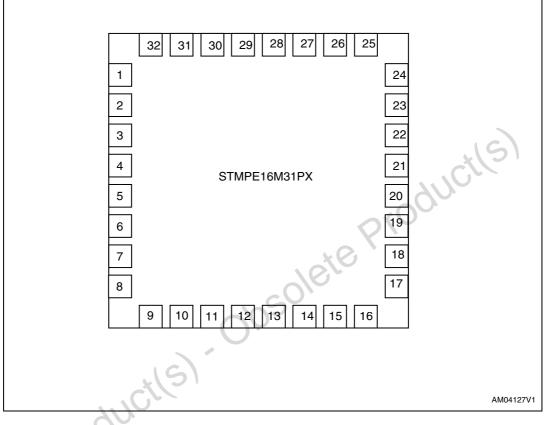
A single STMPE16M31PX device can be used to implement a complete notebook multimedia control bar with eight capacitive touchkeys, proximity sensor with sensitivity up to 5 cm and eight independently controlled LED.

Table 1.Device summary

Order code	Package	Packaging	
STMPE16M31PXQTR	QFN32 (4 x 4 mm)	Tape and reel	

Contents

1	Pin assignment
	1.1 Power scheme
	1.2 Power states
2	I ² C interface module
	2.1 Device operation
3	Read operations
4	Write operations 15 4.1 Write operations for one or more bytes 15
	4.1 Write operations for one or more bytes 15
5	General call address
6	Register map and function description
7	System controller
	7.1 Interrupt system
8	Interrupt service routine
9	GPIO controller
10	PWM array controller
11	PWM controller
	11.1 PWM function register map 39
12	Basic PWM programming 45
	12.1 Interrupt on basic PWM controller 47
13	Touch sensor controller 48
	13.1 Sampling rate calculation 49
	13.2 Sensor resolution 50



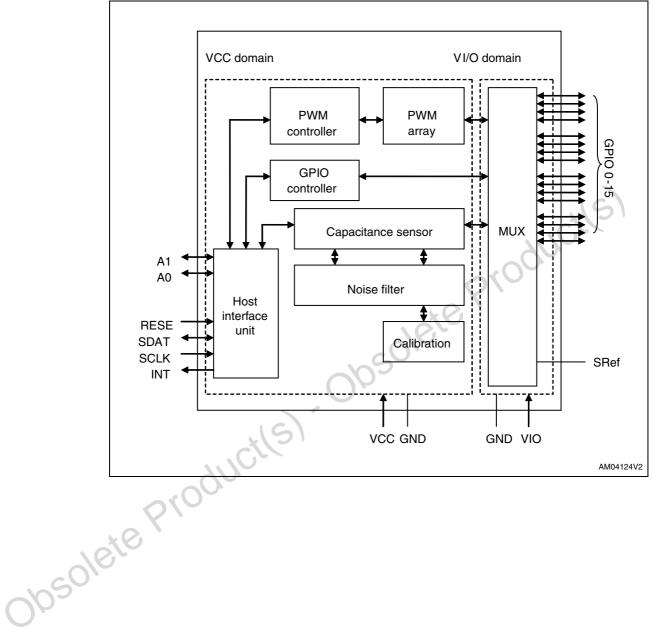
	13.3 Auto tuning
	13.4 Locked impedance 52
	13.5 Calibration
	13.6 Definition of data accessible through channel data register 59
14	Touchkey and proximity sensing controller
15	Maximum rating
	15.1 Recommended operating conditions 69
16	DC electrical characteristics
	16.1 Capacitive sensor specification
17	Package mechanical data
18	Revision history
00501	Revision history

1 Pin assignment

Pin number	Pin name	Voltage domain	Description
<u>x</u> 6 1	GPIO-0	VIO	GPIO / capacitive sense
2	GPIO-1	VIO	GPIO / capacitive sense
3	GPIO-2	VIO	GPIO / capacitive sense
4	GND	-	Ground
5	VIO	-	I/O supply
6	GPIO-3	VIO	GPIO / capacitive sense
7	GPIO-4	VIO	GPIO / capacitive sense
8	GPIO-5	VIO	GPIO / capacitive sense
9	GPIO-6	VIO	GPIO / capacitive sense
10	GPIO-7	VIO	GPIO / capacitive sense
11	GND	-	Ground
12	VIO	-	I/O supply
13	VCC	-	

Table 2. STMPE16M31PX pin description

Doc ID 17058 Rev 2



Pin number	Pin name	Voltage domain	Description
14	INT	VCC	Open drain interrupt output. This pin should be pulled to VCC or GND, depending on polarity of interrupt used. This pin must no be left floating.
15	Address 0	VCC	I ² C address 0
16	SCL	VCC	I ² C clock
17	SDA	VCC	I ² C data
18	RESET_N	VCC	Active low reset signal
19	Address 1	VCC	I ² C address 1
20	CRef	VCC	Reference capacitor
21	GND	VCC	Ground
22	GPIO-8	VIO	GPIO / capacitive sense
23	GPIO-9	VIO	GPIO / capacitive sense
24	VIO	- 016	I/O supply
25	GPIO-10	VIO	GPIO / capacitive sense
26	GPIO-11	VIO	GPIO / capacitive sense
27	GPIO-12	VIO	GPIO / capacitive sense
28	GPIO-13	VIO	GPIO / cap sense
29	VIO	-	I/O supply
30	GND	-	I/O voltage supply
31	GPIO-14	VIO	GPIO / capacitive sense
32	GPIO-15	VIO	GPIO / capacitive sense

 Table 2.
 STMPE16M31PX pin description (continued)

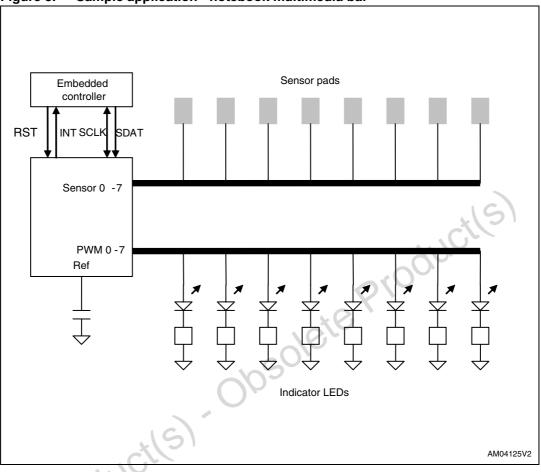
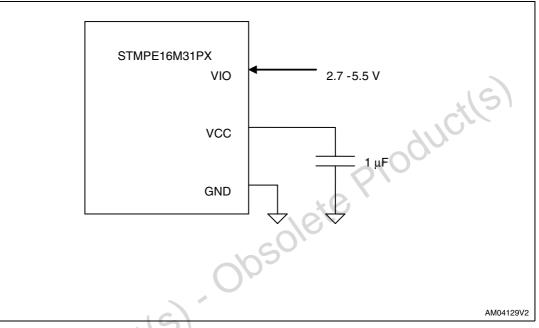


Figure 3. Sample application - notebook multimedia bar


218	Cmax-Cmin (Difference between highest and lowest channel capacitance)	Cmax	Matching capacitors
50'	< 30 pF	< 30 pF	Not required
0,02	<3 0 pF	> 30 pF, < 60 pF	Cref of up to 30 pF required
	> 30 pF, < 60 pF	> 30 pF, < 60 pF	Cref of up to 30 pF required Channel matching capacitance of up to 25 pF required
	> 60 pF	> 60 pF	PCB optimization required

1. For small PCBs, it is possible to operate the device with CRef left unconnected. However, without a small capacitance at this pin, the capacitive sensing operation tends to be noisier. It is recommended that a capacitor of 10 pF to be connected to this pin.

1.1 Power scheme

The STMPE16M31PX is powered by a 2.7-5.5 V supply. An internal voltage regulator regulates this supply into 1.8 V for core operation. It is recommended to connect a 1 μ F capacitor at V_{CC} pin for filtering purpose. The V_{IO} powers all GPIOs directly, if any LED driving is required on the GPIO, the V_{IO} should be at least 3.3 V.

1.2 Power states

The STMPE16M31PX operate in 3 states. *Table 4* illustrates the capability of the device in each of the power states.

 Table 4.
 Functions available in each power state

		Hibernate	Sleep	Active
	l ² C	Yes	Yes	Yes
(GPIO hotkey	Yes	Yes	Yes
	PWM	No	Yes	Yes
Ca	pacitive sensing	No	Slow	Yes
Pr	roximity sensor	No	No	Yes

10501

2 I²C interface module

The STMPE16M31PX has 2 physical I²C address pins, allowing 4 different I²C address settings.

Table 5.I²C address pins

Address 1	Address 0	I ² C address
0	0	0x58
0	1	0x59
1	0	0x5A
1	1	0x5B

The features that are supported by the I²C interface module are the following ones:

- I²C slave device
- Operates at V_{CC}
- Compliant to Philips I²C specification version 2.1
- Supports standard (up to 100 kbps) and fast (up to 400 kbps) modes
- 7-bit and 10-bit device addressing modes
- General call
- Start/restart/stop

The features that are not supported are:

- Hardware general call
- CBUS compatibility
- High-speed (3.4 Mbps) mode

2.1 Device operation

Start condition

A Start condition is identified by a falling edge of SDA while SCL is stable at high state. A Start condition must precede any data/command transfer. The device continuously monitors for a Start condition and does not respond to any transaction unless one is encountered.

Stop condition

A Stop condition is identified by a rising edge of SDA while SCL is stable at high state. A Stop condition terminates the communication between the slave device and bus master. A read command that is followed by NoAck can be followed by a Stop condition to force the slave device into idle mode. When the slave device is in idle mode, it is ready to receive the next I²C transaction. A Stop condition at the end of a write command stops the write operation to registers.

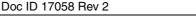
Acknowledge bit (ACK)

The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter releases the SDA after sending eight bits of data. During the ninth bit, the receiver pulls the SDA low to acknowledge the receipt of the eight bits of data. The receiver may leave the SDA in high state if it would to *not* acknowledge the receipt of the data.

Data input

The device samples the data input on SDA on the rising edge of the SCL. The SDA signal must be stable during the rising edge of SCL and the SDA signal must change only when SCL is driven low.

Memory addressing


For the bus master to communicate to the slave device, the bus master must initiate a Start condition and be followed by the slave device address. Accompanying the slave device address, there is a Read/ \overline{W} bit (R/ \overline{W}). The bit is set to 1 for Read and 0 for Write operation.

If a match occurs on the slave device address, the corresponding device gives an acknowledgement on the SDA during the 9th bit time. If there is no match, it deselects itself from the bus by not responding to the transaction. The register memory map of the device is 8-bit address width. Therefore, the maximum number of register is 256 registers of 8-bit width.

Table 6 illustrates the device operating modes that are supported.

	Mode	Bytes	Initial sequence
		d	START, Device Address, R/W =0, Base register Address to be read
	Read	≥1	ReSTART, Device Address, R/W =1, Data Read, STOP
	te Pro		If no STOP is issued, the Data Read can be continuously preformed. The address is automatically incremented on subsequent data read.
SOLE			START, Device Address, R/\overline{W} =0, Register Address to be written, Data Write, STOP
002	Write	≥1	If no STOP is issued, the Data Write can be continuously performed. The address is automatically incremented on subsequent write.

Table 6.Device operation modes

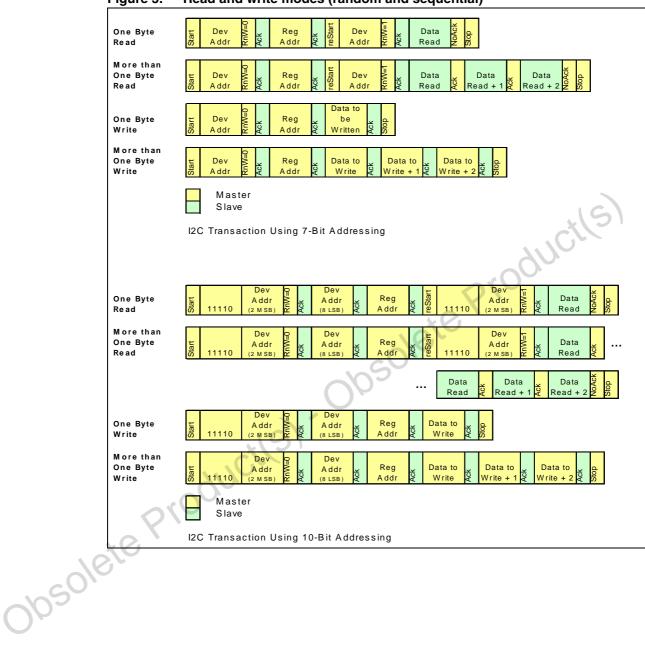


Figure 5. Read and write modes (random and sequential)

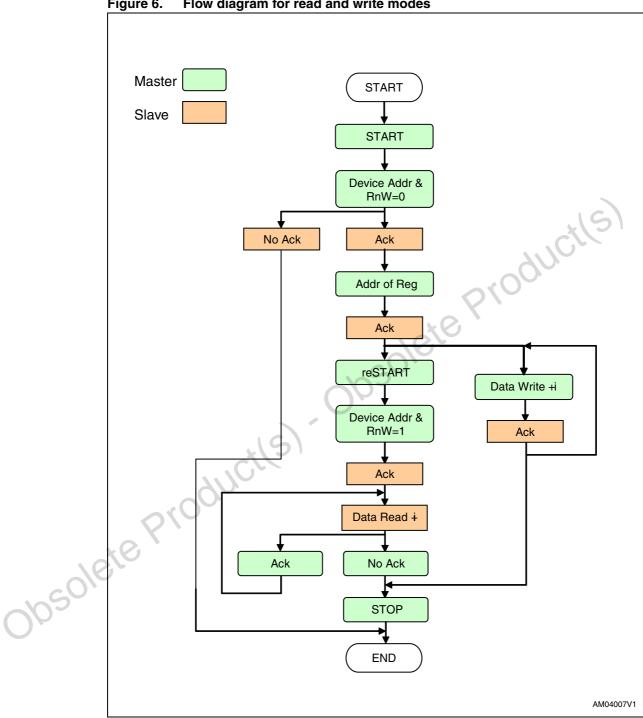


Figure 6. Flow diagram for read and write modes

3 Read operations

Read operations for one or more bytes

A write is first performed to load the base register address into the address counter but without sending a Stop condition. Then, the bus master sends a reStart condition and repeats the Device Address with the R/W bit set to 1. The slave device acknowledges and outputs the content of the addressed byte. If no more data is to be read, the bus master must not acknowledge the byte and terminates the transfer with a Stop condition.

If the bus master acknowledges the data byte, then it can continue to perform the data reading. To terminate the stream of data byte, the bus master must not acknowledge the last output byte and follow by a Stop condition. The data fetched are from consecutive addresses. After the last memory address, the Address Counter 'rolls-over' and the device continue to output data from the memory address of 0x00.

Acknowledgement in read operation

For the above read command, the slave device waits, after each byte read, for an acknowledgement during the 9th bit time. If the bus master does not drive the SDA to low state (no acknowledgement by the master), then the slave device terminates and switches back to its idle mode, waiting for the next command.

4 Write operations

4.1 Write operations for one or more bytes

A write is first performed to load the base register address into the Address Counter without sending a Stop condition. After the bus master receives an acknowledgement from the slave device, it may start to send a data byte to the register (pointed by the Address Counter). The slave device again acknowledges and the bus master terminates the transfer with a Stop condition.

If the bus master would like to continue to write more data, it can just continue write operation without issuing the Stop condition. After the bus master writes the last data byte and the slave device acknowledges the receipt of the last data, the bus master may terminate the write operation by sending a Stop condition. When the Address Counter reaches the last memory address, it 'rolls-over' on the next data byte write.

5 General call address

A general call address is a transaction with the slave address of 0x00 and R/W = 0. When a general call address is made, the GPIO expander responds to this transaction with an acknowledgement and behaves as a slave-receiver mode. The meaning of a general call address is defined in the second byte sent by the master-transmitter.

R/W	Second byte value	Definition
0	0x06	2-byte transaction in which the second byte tells the slave device to perform a soft reset and write (or latch in) the 2-bit programmable part of the slave address.
0	0x04	2-byte transaction in which the second byte tells the slave device not to perform a soft reset and write (or latch in) the 2-bit programmable part of the slave address.
0	0x00	Not allowed as second byte.

Table 7. D	efinition of the second byte of the I ² C transaction
------------	--

Note: All other second byte values will be ignored.

Jbsolete Product(s)

Note: Please allow a gap of approximately 2 µs gap before the next I2C transaction after the General Call of 0x04 or 0x06.

6 Register map and function description

This section lists and describes the registers of the STMPE16M31PX device, starting with a register map and then provides detailed descriptions of register types.

	Address	Register name	Reset value	l ² C	Register function
	0x00	CHIP_ID	0x2431	R	CHIP identification number MSB: 0x24, LSB: 0x32
	0x02	ID_VER	0x03	R	Version of device Engineering samples: 0x01, 0x02 Final silicon: 0x03
	0x03	SYSCON-1	0x00	RW	General system control
	0x04	SYSCON-2	0xFE	RW	Sensor and PWM clock divider
	0x06	INT_CTRL	0x00	RW	Interrupt control
	0x08	INT_STA	0x00	RW	Interrupt status
	0x09	INT_EN	0x00	RW	Interrupt enable
	0x0A	GPIO_INT_STA	0x0000	RW	Interrupt status GPIO
	0x0C	GPIO_INT_EN	0x0000	RW	Interrupt enable GPIO
	0x0E	PWM_INT_STA	0x00	RW	Interrupt status PWM
	0x0F	PWM_INT_EN	0x00	RW	Interrupt enable PWM
	0x10	GPIO_DIR	0x0000	RW	GPIO direction setting
	0x12	GPIO_MP_STA	0x0000	R	GPIO pin state monitor
	0x14	GPIO_SET_PIN	0x0000	RW	GPIO set pin state
	0x16	GPIO_ALT_FUN	0x0000	RW	GPIO alternate function
opsole	0x20	GPIO_0_PWM_CFG	0x00	RW	Configures PWM output of GPIO-0
~10 ⁵⁰	0x21	GPIO_1_PWM_CFG	0x00	RW	Configures PWM output of GPIO-1
	0x22	GPIO_2_PWM_CFG	0x00	RW	Configures PWM output of GPIO-2
	0x23	GPIO_3_PWM_CFG	0x00	RW	Configures PWM output of GPIO-3
	0x24	GPIO_4_PWM_CFG	0x00	RW	Configures PWM output of GPIO-4
	0x25	GPIO_5_PWM_CFG	0x00	RW	Configures PWM output of GPIO-5
	0x26	GPIO_6_PWM_CFG	0x00	RW	Configures PWM output of GPIO-6

Table 8. Register map

 Table 8.
 Register map (continued)

	Address	Register map (continued Register name	, Reset value	l ² C	Register function
		-			Configures PWM output of
	0x27	GPIO_7_PWM_CFG	0x00	RW	GPIO-7
	0x28	GPIO_8_PWM_CFG	0x00	RW	Configures PWM output of GPIO-8
	0x29	GPIO_9_PWM_CFG	0x00	RW	Configures PWM output of GPIO-9
	0x2A	GPIO_10_PWM_CFG	0x00	RW	Configures PWM output of GPIO-10
	0x2B	GPIO_11_PWM_CFG	0x00	RW	Configures PWM output of GPIO-11
	0x2C	GPIO_12_PWM_CFG	0x00	RW	Configures PWM output of GPIO-12
	0x2D	GPIO_13_PWM_CFG	0x00	RW	Configures PWM output of GPIO-13
	0x2E	GPIO_14_PWM_CFG	0x00	RW	Configures PWM output of GPIO-14
	0x2F	GPIO_15_PWM_CFG	0x00	RW	Configures PWM output of GPIO-15
	0x30	PWM_MASTER_EN	0x00	RW	PWM master enable
	0x40	PWM_0_SET	0x00	RW	PWM0 setup
	0x41	PWM_0_CTRL	0x00	RW	PWM0 control
	0x42	PWM_0_RAMP_RATE	0x00	RW	PWM0 ramp rate
	0x43	PWM_0_TRIG	0x00	RW	PWM0 trigger
	0x44	PWM_1_SET	0x00	RW	PWM1 setup
	0x45	PWM_1_CTRL	0x00	RW	PWM1 control
	0x46	PWM_1_RAMP_RATE	0x00	RW	PWM1 ramp rate
16	0x47	PWM_1_TRIG	0x00	RW	PWM1 trigger
~0`	0x48	PWM_2_SET	0x00	RW	PWM2 setup
10-2	0x49	PWM_2_CTRL	0x00	RW	PWM2 control
	0x4A	PWM_2_RAMP_RATE	0x00	RW	PWM2 ramp rate
	0x4B	PWM_2_TRIG	0x00	RW	PWM2 trigger
	0x4C	PWM_3_SET	0x00	RW	PWM3 setup
	0x4D	PWM_3_CTRL	0x00	RW	PWM3 control
	0x4E	PWM_3_RAMP_RATE	0x00	RW	PWM3 ramp rate
	0x4F	PWM_3_TRIG	0x00	RW	PWM3 trigger
	0x50	PWM_4_SET	0x00	RW	PWM4 setup
	0x51	PWM_4_CTRL	0x00	RW	PWM4 control
	0x52	PWM_4_RAMP_RATE	0x00	RW	PWM4 ramp rate

Ta	ble 8. Re	gister map (continued)		
	Address	Register name	Reset value	l ² C	Register function
	0x53	PWM_4_TRIG	0x00	R/W	PWM4 trigger
	0x54	PWM_5_SET	0x00	R/W	PWM5 setup
	0x55	PWM_5_CTRL	0x00	R/W	PWM5 control
	0x56	PWM_5_RAMP_RATE	0x00	R/W	PWM5 ramp rate
	0x57	PWM_5_TRIG	0x00	R/W	PWM5 trigger
	0x58	PWM_6_SET	0x00	R/W	PWM6 setup
	0x59	PWM_6_CTRL	0x00	R/W	PWM6 control
	0x5A	PWM_6_RAMP_RATE	0x00	R/W	PWM6 ramp rate
	0x5B	PWM_6_TRIG	0x00	R/W	PWM6 trigger
	0x5C	PWM_7_SET	0x00	R/W	PWM7 setup
	0x5D	PWM_7_CTRL	0x00	R/W	PWM7 control
	0x5E	PWM_7_RAMP_RATE	0x00	R/W	PWM7 ramp rate
	0x5F	PWM_7_TRIG	0x00	R/W	PWM7 trigger
	0x70	CAP_SEN_CTRL	0x00	R/W	Capacitive sensor control
	0x71	RATIO_ENG_REPT_C TRL	0x00	R/W	Ratio engine report control (only available in final silicon)
	0x72	CH_SEL	0x00000000	R/W	Selects active capacitive channels
	0x76	CAL_INT	0x00	R/W	10 ms – 64 s calibration interval
	0x77	CAL_MOD	0x00	R/W	Selects calibration model
	0x78	MAF_SET	0x00	R/W	Control of median averaging filter
0161	0x7C	DATA_TYPE	0x00	R/W	Selects type of data available in channel data ports. 0x01: TVR 0x02: EVR 0x03: Channel delay 0x04: Impedance (13-bit) 0x05:Calibrated Impedance (13- bit) 0x06:Locked impedance (13-bit)
	0x90	KEY_PROX_CTRL	0x00	R/W	General key filter control
	0x92	KEY_FILT_GROUP-1	0x00000000	R/W	Define channels included in key filter group 1
	0x96	PROX_CFG	0x00	R/W	proximity configuration register
	0x97	PTVR	0x00	R/W	TVR used for proximity sensing
	0x98	PEVR	0x00	R/W	EVR used for proximity sensing and forced proximity calibration

 Table 8.
 Register map (continued)

Address	Register name	Reset value	l ² C	Register function
0xB1	PEPort1	0x00	R	Proximity data 1
0xBO	PEPort0	0x00	R	Proximity data O
0x9A	KEY_FILT_DATA	0x00000000		Filtered touchkey data
0xB4	TOUCH_DET	0x00000000	R	Touch detection register (real time)
0xC0	CH_DATA-0	0x0000		
0xC2	CH_DATA-1	0x0000		
0xC4	CH_DATA-2	0x0000		product(s)
0xC6	CH_DATA-3	0x0000		4(5)
0xC8	CH_DATA-4	0x0000		
0xCA	CH_DATA-5	0x0000		
0xCC	CH_DATA-6	0x0000	4	0
0xCE	CH_DATA-7	0x0000	.0.	X
0xD0	CHDATA-8	0x0000	R	Channel data according to da type setting
0xD2	CH_DATA-9	0x0000		iypo oottiing
0xD4	CH_DATA-10	0x0000		
0xD6	CH_DATA-11	0x0000		
0xD8	CH_DATA-12	0x0000		
0xDA	CH_DATA-13	0x0000		
0xDC	CH_DATA-14	0x0000		
0xDE	CH_DATA-15	0x0000		
0xE0	CH_DATA-16	0x0000		

Table 8. Register map (continued)

7 System controller

The system controller contains the registers that control the following functions:

- Device identification
- Version identification
- Power state management
- Clock speed management
- Clock gating to various modules

Table 9.System controller registers

	Address	Register name	Reset value	R/W	Description
	0x00	CHIP_ID	0x2432	R	CHIP identification number MSB: 0x24, LSB: 0x32
	0x02	ID_VER	0x03	R	Version of device
	0x03	SYSCON-1	0x00	RW	General system control
	0x04	SYSCON-2	0xFE	RW	Sensor and PWM clock divider
obsole	tepr	oduct(s)			

General system control

SYSCON-1

Address:	0x03
Туре:	R/W
Reset:	0x00

Description: The general system control register (SYSCON-1) controls the operation state and clock speed of the device.

7	6	5	4	3	2	1	0
RESERVED	RESERVED	RESERVED	CLKSPD	SLEEP_EN	Reserved	SOFT_RST	HIBRNT
RW	RW	RW	RW	RW	RW	RW	RW
1	1	1	1	1	1	1	0
							101

[7:5] RESERVED: Do not write to these bits. Reads '0'. Writing '1' to these bits may result in unpredictable behaviour.

- [4] CLKSPD: Selects the macro engine's speed.
 - 0: 2 MHz
 - 1: RESERVED
- [3] SLEEP_EN: Enable or disable the sleep mode. Under all operating conditions, this bit should be set to '0'.
 - 1: Enable the touch sensor's sleep mode
 - 0: Disable the touch sensor's sleep mode
- [2] RESERVED: Do not write to these bits. Reads '0'.
- [1] SOFT_RST: Soft reset. 1: To perform soft reset.
- [0] HIBRNT: Hibernate.
- 1: To force the device to hibernate mode.

SYSCON-2					Sensor an	d PWM clo	ock divider		
Address:	0x04								
Туре:	R/W								
Reset:	0xFE								
Description:		Sensor and PWM clock divider. The SYSCON-2 register controls the sensor and PWM clock speed, and the clock gating of various functional modules.							
		This bit will always read '0'. as the I2C transaction to read this bit will wake up the device from hibernate mode.							
7	6	5	4	3	2	1	0		
	SCLK_DIV		PCLK_DIV		GPIO_CLK	PWM_CLK	CS_CLK		
	RW		RW		RW		RW		
	1		1		1		0		

[7:5] SCLK_DIV: Sensor clock divider.

- 000, 001: RESERVED 010 : 32 (to be used only if load capacitance is < 30 pF) 011: 64 100: 128 101: 256 110: 512 111: 1024 Sensor clock is 2 ML

PRBS factor is a pseudo-random sequence of number, ranging from 1-8. This is used to reduce the effect of surrounding EMI on the sensor. Average of this factor is approximately 2.5 Effective sampling rate is 2 MHz/ (2.5*SCLK_DIV[2:0]).

Maximum total sampling rate : 2MHz/(2.5*64) = 12.5 kHz

Minimum total sampling rate : 2 MHz/(2.5*1024) = 780 Hz

If N channel is active, the per-channel sampling rate is "total sampling rate / N".

Maximum channel sampling rate = 12.5 kHz/24 = 521 Hz

- [4:3] PCLK_DIV: PWM clock divider 00 for 16 kHz 01 for 30 11
 - 11 for 128 kHz

- [2] PMW_CLK: PWM clock disableWrite "1" to disable the clock to PWM module.When clock to PWM module is disabled, access to PWM module register will not work correctly.
- [1] GPIO_CLK: GPIO clock disable
 Write "1" to diWrite "1" to disable the clock to GPIO module.
 When clock to GPIO module is disabled, access to GPIO module register will not work correctly.
- (9) CS_CLK: Capacitive sensor clock disable Write "1" to disable the clock to capacitive sensor module When clock to touch module is disabled, access to touch module registers will not work correctly.

7.1 Interrupt system

This module controls the interruption to the host based on the activity of other modules in the system, such as the capacitive sensing, GPIO and PWM modules.

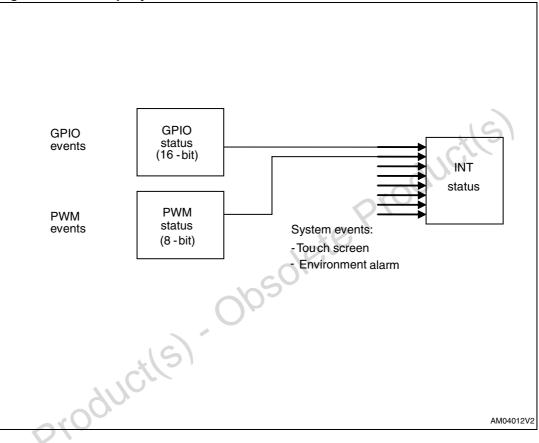


Figure 7. Interrupt system

Table 10. Interrupt system registers

	Table 10.	Interrupt system re	gisters		
18	Address	Register name	Reset value	R/W	Description
CO'	0x06	INT_CTRL	0x00	RW	Interrupt control register
\mathcal{O}	0x08	INT_STA	0x00	RW	Interrupt status register
	0x09	INT_EN	0x00	RW	Interrupt enable register
	0x0A	GPIO_INT_STA	0x0000	RW	Interrupt status GPIO register
	0x0C	GPIO_INT_EN	0x0000	RW	Interrupt enable GPIO register
	0x0E	PWM_INT_STA	0x00	RW	Interrupt status PWM register
	0x0F	PWM_INT_EN	0x00	RW	Interrupt enable PWM register

INT_CTRL

Interrupt control register

Address:	0x06
Туре:	R/W
Reset:	0x00
Description:	SYSCON3 controls the interrupt signal generation.

7	6	5	4	3	2	1	0
	RESERVED				INT_POL	INT_TYPE	INT_EN
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0
obsole	0: Active 1: Active [1] INT_TY 0: Level 1: Edge [0] INT_EN 1: Enab	DL: Interrupt po e low e high PE: Interrupt to trigger trigger I: Interrupt ena le the interrupt	larity rigger type ble t	bosol	eteP		

Interrupt status register

INT STA

Address: 0x08 R/W Type: **Reset:** 0x00 **Description:**

This register holds interrupt status from each event.

7	6	5	4	3	2	1	0
GPIO	PWM	WAKEUP	ENV	EOC	TOUCH	PROX	RESERVED
RW	RW	RW	RW	RW	RW	RW	-
0	0	0	0	0	0	0	0
	Read '1	Activity in GPIC ' if GPIO event ' to clear the in	t occurs			oduc	<u>;(</u> (5)

[7] GPIO: Activity in GPIO	
Read '1' if GPIO event occurs	
Write '1' to clear the interrupt status	

- [6] PWM: Any channel of PWM has completed the programmed sequence Read '1' if PWM event occurs Write '1' to clear the interrupt status
- [5] Device wake up from SLEEP or HIBERNATE mode Read '1' if wake-up event occurs Write '1' to clear the interrupt status
- [4] ENV: Possible drastic/abnormal environmental changes that requires attention from system software. This event includes 'calibration stuck' and 'tuning out of range'. If this bit is set, it is recommended that the host software initiates an unconditional calibration.
 - Read '1' if the events occur
 - Write '1' to clear the interrupt status
- [3] EOC: End of calibration Read '1' if the host-triggered calibration has completed Write '1' to clear the interrupt status
- [2] TOUCH: Touch-key event Read '1' if touch is detected Write '1' to clear the interrupt status
- [1] PROX: Proximity sensor event Read '1' if proximity sensor detects an object Write '1' to clear the interrupt status
- [0] RESERVED

1050le

Interrupt enable register

INT_EN

Address:	0x09
Туре:	R/W
Reset:	0x00
Description:	Controls inter

Controls interrupt source enable.

7	6	5	4	3	2	1	0			
GPIO	PWM	WAKEUP	ENV	EOC	TOUCH	PROX	RESERVED			
RW	RW	RW	RW	RW	RW	RW	W			
0	0	0	0	0	0	0	0			
	 [7] GPIO: Activity in GPIO Write '1' to enable interrupt signal from GPIO Write '0' to disable interrupt signal from GPIO [6] PWM: Any channel of PWM has completed the programmed sequence 									

[7]	GPIO: Activity in GPIO
	Write '1' to enable interrupt signal from GPIO
	Write '0' to disable interrupt signal from GPIO
[6]	PWM: Any channel of PWM has completed the programmed sequence
	Write '1' to enable interrupt signal from PWM
	Write '0' to disable interrupt signal from PWM
[5]	Device wake up from SLEEP or HIBERNATE mode
	Read '1' if wake-up event occurs
	Write '1' to clear the interrupt status

[4] ENV: Possible drastic/abnormal environmental changes that requires attention from system software. This event includes 'calibration stuck' and 'tuning out of range' Write '1' to enable interrupt signal from calibration/tuning event Write '0' to disable interrupt signal from calibration/tuning event

[3] EOC: End of calibration

Write '1' to enable interrupt signal from end of calibration event Write '0' to disable interrupt signal from end of calibration event

[2] TOUCH: Touchkey event

System should access touch detection register when this interrupt is received. Touch interrupt source needs to be enabled to activate key filter data. Write '1' to enable interrupt signal from touch event Write '0' to disable interrupt signal from touch event

- [1] PROX: Proximity sensor event Write '1' to enable interrupt signal from proximity sensor
- [0] RESERVED Write '0' to disable interrupt signal from proximity sensor

Josole

GPIO_INT_S	STA Inte	errupt status GPIO register
Address:	0x0A – 0x0B	
Туре:	R/W	
Reset:	0x0000	
Decembrations	This we also a wells she that she at the status of ODIO that has he	and the second

This register reflects the status of GPIO that has been configured as input. When **Description:** there is a change in GPIO state, the corresponding bit will be set to '1' by hardware. Writing '1' to the corresponding bit clears it. Writing '0' has no effect.

LSB (0x0A)

7	6	5	4	3	2	1	0
IO-7	IO-6	IO-5	IO-4	IO-3	IO-2	IO-1	10-0
RW							
0	0	0	0	0	0	0	0

MSB (0x0B)

0	0	0	0	0	0	0	0		
MSB (0x0B)									
7	6	5	4	3	2	1	0		
IO-15	IO-14	IO-13	IO-12	IO-11	IO-10	IO-9	IO-8		
RW	RW	RW	RW	RW	RW	RW	RW		
0	0	0	0	0	0	0	0		

[7:0] IO - X: Interrupt status of GPIO - X

Read '1' if state transition is detected in corresponding GPIO channel ar the produce obsolete Write'1' to clear the interrupt staus.

STMPE16M31PX

GPIO_INT_EN

Interrupt enable GPIO register

0x0C – 0x0D
R/W
0x0000
This register is used to enable the generation of interrupt signal, at the INT pin.

LSB (0x0C)

-	7	6	5	4	3	2	1	0	
IC)-7	IO-6	IO-5	IO-4	IO-3	IO-2	IO-1	IO-0	
R	W	RW							
()	0	0	0	0	0	0		
MSB (0x0D)									

MSB (0x0D)

7	6	5	4	3	2		0		
IO-15	IO-14	IO-13	IO-12	IO-11	IO-10	IO-9	IO-8		
RW	RW	RW	RW	RW	RW	RW	RW		
0	0	0	0	0	0	0	0		
[7:0] IO - X									

[7:0] IO - X

Interrupt status of GPIO - X Read '1' if state transition is detected in corresponding GPIO channel Write'1' to clear the interrupt staus.

PWM_INT_STA

Interrupt status PWM register

Address: Type: **Reset: Description:**

R/W 0x00

0x0E

When a PWM controller completes the PWM sequence, the corresponding bit in this register goes to '1'. Write '1' in this register clears the written bit, writing '0' has no effect.

7	6	5	4	3	2	1	0
PWM-7	PWM-6	PWM-5	PWM-4	PWM-3	PWM-2	PWM-1	PWM-0
RW							
0	0	0	0	0	0	0	0

[7:0] PWM - X

Interrupt status of PWM - X. Read '1' if the corresponding PWM channel complete programmed sequence Write '1' to clear the interrupt status

PWM_INT_EN

Interrupt enable PWM enable register

Address:	0x0F
Туре:	R/W
Reset:	0x00
Description:	Writing '1' to this register enables the generation of INT by the

ne corresponding PWM channel.

7	6	5	4	3	2	1	0
PWM-7	PWM-6	PWM-5	PWM-4	PWM-3	PWM-2	PWM-1	PWM-0
RW							
0	0	0	0	0	0	0	0
							10

[7:0] PWM - X

Enable of PWM – X.

ereteb obsolete b obsolete obsolete obsolete b obsolete Write '1' to the corresponding bit to enable interrupt generated by a PWM channel

8 Interrupt service routine

On receiving an interrupt, system software should:

Read InterruptStatus

```
If (GPIO.bit==1)
{
Read InterruptStatusGPIO
Process GPIO INT
Write InterruptStatusGPIO to clear the corresponding bit
Write InterruptStatus to clear the corresponding bit
}
If (PWM.bit==1)
{
Read InterruptStatusPWM
Process PWM INT
Write InterruptStatusPWM to clear the corresponding bit
Write InterruptStatus to clear the corresponding bit
```

If (EV_ALARM or TOUCHSCREEN or TOUCHKEY)

Process INT

}

Write InterruptStatus to clear the corresponding bit

1050

9 **GPIO** controller

A total of 16 GPIOs are available in the STMPE16M31PX. Most of the GPIOs are sharing physical pins with some alternate functions. The GPIO controller contains the registers that allow the host system to configure each of the pins into either a GPIO, or one of the alternate functions. Unused GPIOs should be configured as outputs to minimize the power consumption.

Address	Register name	Reset value	R/W		Descriptio	on
0x10	GPDR	0X0000	R/W	GPIO dir	rection registe	r
0x12	GPMR	0X0000	R/W	GPOIO r	monitor pin sta	ate register
0x14	GPSR	0X0000	R/W	GPIO se	t pin register	
0x16	GPFR	0X0000	R/W	GPIO alt	ernate functio	on register
0.40.0			X	GP	IO direction	on regis
0x10 – 0x RW	x11	50	let	GP	IO directio	on regis
	x11	01050	let	GP	IO directio	on regis
RW 0x00	x11 seeting of the GPIO	0050	let	GP	IO directio	on regis
RW 0x00		0050	et	GP	IO directio	on regis

Table 11. **GPIO** controller registers

GPIO_DIR

Туре:	RW
Reset:	0x00
Description:	Direction seeting of the GPI

LSB (0x10)

7	6	5	4	3	2	1	0
IO-7	IO-6	IO-5	IO-4	IO-3	IO-2	IO-1	IO-0
RW							
0	0	0	0	0	0	0	0

MSB (0x11)

7	6	5	4	3	2	1	0
IO-15	IO-14	IO-13	IO-12	IO-11	IO-10	IO-9	IO-8
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0

[7:0] IO - X

Write '1' to a bit to set the corresponding I/O to output. Write '0' to a bit to set the corresponding I/O to input.

GPIO_MP_STA

GPIO monitor pin state register

Address:	0x12-0x13
Туре:	R
Reset:	0x00
Description:	Contains the state of all GPIO.

LSB (0x12)

7	6	5	4	3	2	1	0
IO-7	IO-6	IO-5	IO-4	IO-3	IO-2	IO-1	IO-0
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0
MSB (0x1	3)	F	4	2	0	dul	

MSB (0x13)

7	6	5	4	3	2	1	0
IO-15	IO-14	IO-13	IO-12	IO-11	IO-10	IO-9	IO-8
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0
	[7:0] IO - X		(1050	0		

[7:0] IO - X

Read '1' if the corresponding IO is in HIGH state Read '0' if the corresponding IO is in LOW state obsolete Product

GPIO_SET_PIN

GPIO set pin state register

Address:	0x14 – 0x15
Туре:	RW
Reset:	0x00
Description:	Setting of the I/O output state.

LSB (0x14)

7	6	5	4	3	2	1	0
IO-7	IO-6	IO-5	IO-4	IO-3	IO-2	IO-1	IO-0
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0
MSB (0x1	5)	F	,	2		du'	

MSB (0x15)

•	,						
7	6	5	4	3	2		0
IO-15	IO-14	IO-13	IO-12	IO-11	IO-10	IO-9	IO-8
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0

[7:0] IO - X

Write '1' to set the corresponding IO output state to HIGH Write '0' to set the corresponding IO output state to LOW obsolete Product

GPIO_AF

GPIO	function	register
------	----------	----------

Address:	0x16-0x17
Туре:	RW
Reset:	0x00
Description:	Setting of the GPIO function.

LSB (0x16)

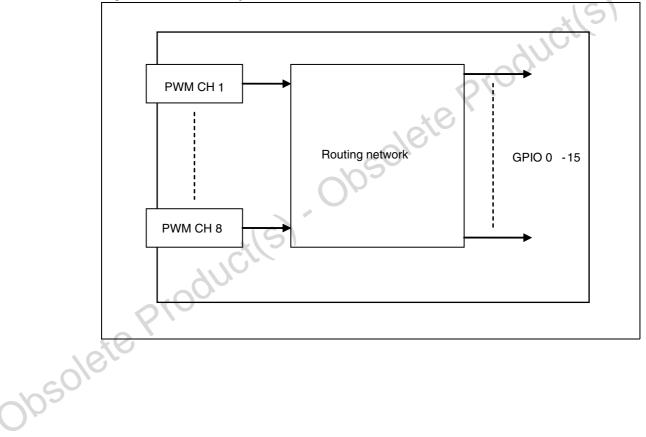
7	6	5	4	3	2	1	0			
IO-7	IO-6	IO-5	IO-4	IO-3	IO-2	IO-1	IO-0			
RW	RW	RW	RW	RW	RW	RW	RW			
0	0	0	0	0	0	0	0			
MSB (0x17)										

MSB (0x17)

7	6	5	4	3	2	1	0	
IO-15	IO-14	IO-13	IO-12	IO-11	IO-10	IO-9	IO-8	
RW	RW	RW	RW	RW	RW	RW	RW	
0	0	0	0	0	0	0	0	
	cov							
	[7:0] IQ - X							

[7:0] IO - X

Write '1' to set the corresponding GPIO to alternate function (IO) espo obsolete Production Write '0' to set the corresponding GPIO to primary function (capacitive sensor)


10 PWM array controller

The STMPE16M31PX integrates 8 independent PWM controllers capable of blinking and brightness control.

Each of the PWM controllers can be programmed to execute a series of blinking/brightness control actions. One PWM controller could be mapped to more than one GPIO, allowing multiple GPIO outputs to share a PWM controller.

Each PWM controller can be connected to any of GPIO channel through the routing network which is controlled by GPIOn_PWM_CFG register (n = GPIO channel number).

Figure 8. PWM array controller

PWM array controller

GPIO_PWM_CFG

Type: RW

Reset: 0x00

Description: This register controls the routing network which connects each PWM channel to any GPIO channel. GPIOn_PWM_CFG register (n=0-15, represent the GPIO channel number)

7	6	5	4	3	2	1	0
OUT_EN	RESERVED			OUT_IDLE	PWM_SEL		
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0
						JU	

[7] OUT_EN:

Write '1' to set the I/O (configured as GPIO) to operate as PWM Output. All GPIO register setting will be by-passed.

- [6:4] RESERVED
 - [3] OUT_IDLE:

Write '1' to set the I/O state to HIGH after PWM sequence has been completed Write '0' to set the I/O state to LOW after PWM sequence has been completed

[2:0] PWM_SEL:

Write '1' to set the I/O state to HIGH after PWM sequence has been completed Write '0' to set the I/O state to LOW after PWM sequence has been completed

11 PWM controller

The PWM controller allows to control the brightness, ramping/fading and blinking of LEDs. The STMPE16M31PX features 8 independent PWM controllers.

The PWM controllers outputs are connected to the GPIO through the PWM array controller. The PAC provides the following list of flexibility to the overall PWM's system:

- Each GPIO may utilize the output of 1 of the 8 PWM controllers.
- Up to 16 GPIO may be controlled by the same PWM at the same time.
- Each of the PWM could be programmed to be triggered by a touch sensing input.

Note: The PWM cannot be programmed to be triggered by a proximity sensing input.

The PWM controller uses a base clock of 512 kHz, clock pulses have a variable duty cycle of 0 to 100% in 16 steps. The PWM's frequency is 32 kHz (to be out of audio range).

11.1 PWM function register map

This section lists and describes the PWM function registers of the STMPE16M31PX device, starting with a register map and then provides detailed descriptions of register types.

	Address	Register name	Reset value	R/W	Description
	0x30	PWM_MATER_EN	0x00	RW	PWM master enable
	0x40	PWM_0_SET	0x00	RW	PWM0 setup
	0x41	PWM_0_CTRL	0x00	RW	PWM0 control
	0x42	PWM_0_RAMP	0x00	RW	PWM0 ramp rate
	0x43	PWM_0_TRIG	0x00	RW	PWM0 trigger
10	0x44	PWM_1_SET	0x00	RW	PWM1 setup
cO'	0x45	PWM_1_CTRL	0x00	RW	PWM1 control
10501	0x46	PWM_1_RAMP	0x00	RW	PWM1 ramp rate
J.	0x47	PWM_1_TRIG	0x00	RW	PWM1 trigger
	0x48	PWM_2_SET	0x00	RW	PWM2 setup
	0x49	PWM_2_CTRL	0x00	RW	PWM2 control
	0x4A	PWM_2_RAMP	0x00	RW	PWM2 ramp rate
	0x4B	PWM_2_TRIG	0x00	RW	PWM2 trigger
	0x4C	PWM_3_SET	0x00	RW	PWM3 setup
	0x4D	PWM_3_CTRL	0x00	RW	PWM3 control
	0x4E	PWM_3_RAMP	0x00	RW	PWM3 ramp rate
	0x4F	PWM_3_TRIG	0x00	RW	PWM3 trigger

Table 12. PWM function registers

able 12.	PWM function regi	sters (continue	ea)	
Address	Register name	Reset value	R/W	Description
0x50	PWM_4_SET	0x00	RW	PWM4 setup
0x51	PWM_4_CTRL	0x00	RW	PWM4 control
0x52	PWM_4_RAMP	0x00	RW	PWM4 ramp rate
0x53	PWM_4_TRIG	0x00	RW	PWM4 trigger
0x54	PWM_5_SET	0x00	RW	PWM5 setup
0x55	PWM_5_CTRL	0x00	RW	PWM5 control
0x56	PWM_5_RAMP	0x00	RW	PWM5 ramp rate
0x57	PWM_5_TRIG	0x00	RW	PWM5 trigger
0x58	PWM_6_SET	0x00	RW	PWM6 setup
0x59	PWM_6_CTRL	0x00	RW	PWM6 control
0x5A	PWM_6_RAMP	0x00	RW	PWM6 ramp rate
0x5B	PWM_6_TRIG	0x00	RW	PWM6 trigger
0x5C	PWM_7_SET	0x00	RW	PWM7 setup
0x5D	PWM_7_CTRL	0x00	RW	PWM7 control
0x5E	PWM_7_RAMP	0x00	RW	PWM7 ramp rate
0x5F	PWM_7_TRIG	0x00	RW	PWM7 trigger
	ductis			Mootor opoblo vosiato
STER_EN	00-			Master enable registe
0x30	-			

Table 12 PWM function registers (continued)

PWM_MASTER_EN

Address:	
Туре:	

Reset:

RW 0x00

0x30

Description:

ENABLE/DISABLE setting of all PWM channels.

7	6	5	4	3	2	1	0
EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0
RW							
0	0	0	0	0	0	0	0

[7:0] EN-X (X = 7-0)

Write '1' to enable the corresponding PWM channel Read '0' if the PWM sequence is completed

If PWM is set to be touch sensor-triggered :

Read '1' if the corresponding PWM channel is running

PWM-n setup register

PWM n SET

Address: 0x40, 0x44, 0x48, 0x4C, 0x50, 0x54, 0x58, 0x5C

RW Type: 0x00 **Reset:**

Description: Setting of brightness, time unit and ramp-mode.

7	6	5	4	3	2	1	0
	BRIGT	HNESS			RAMPMODE		
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0

[7:4] BRIGHTNESS:

It defines the duty cycle during the ON period of the PWM channel output in no-ramp mode or the highest duty cycle to be reached in ramp-mode. The PWM duty cycle determines the brightness level of the LED that the PWM output drives.

olete

'0000' : Duty cycle ratio 1:15 (6.25%, minimum brightness)

'0001' : Duty cycle ratio 2:14 (12.50%)

'0010' : Duty cycle ratio 3:13 (18.75%)

- '0011' : Duty cycle ratio 4:12 (25.00%)
- '0100' : Duty cycle ratioo 5:11 (31.25%)
- '0101' : Duty cycle ratio 6:10 (37.50%)
- '0110' : Duty cycle ratio 7: 9 (43.75%)
- '0111' : Duty cycle ratio 8: 8 (50.00%)
- '1000' : Duty cycle ratio 9: 7 (56.25%)
- '1001' : Duty cycle ratio 10: 6 (62.50%)
- '1010' : Duty cycle ratio 11: 5 (68.75%)
- '1011' : Duty cycle ratio 12: 4 (75.00%)
- "1100 ': Duty cycle ratio 13: 3 (81.25%)
- "1101 ': Duty cycle ratio 14: 2 (87.50%)
- '1110' : Duty cycle ratio 15: 1 (93.75%)
- '1111' : Duty cycle ratio 16: 0 (100.00%, maximum brightness).

10501e [3:0] TIMING:

It is the time unit from which the duration of the ON period and OFF period is defined in PWM-N control register.

- '000' = 20 mS
- '001' = 40 mS
- '010' = 80 mS
- '011' = 160 mS
- '100' = 320 mS
- '101' = 640 mS
- '110' = 1280 mS
- '111' = 2560 mS
- [0] RAMP MODE:
 - Write '1' to enable ramp-mode

Write '0' to disable ramp-mode which in this setting the output goes to the set brightness level

40/75

STMPE16M31PX

PWM_n_CTRL

PWM-n control register

Address: 0x41, 0x45, 0x49, 0x4D, 0x51, 0x55, 0x59, 0x5D

RW Type:

Reset: 0x00

Description: Setting of ON/OFF period, repetition, and ON/OFF order.

7	6	5	4	3	2	1	0
Pe	Period 0 Period 1			Order			
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0

[7:6] Period 0

Define the ON time based on time unit set in PWM-N setup register '00' : 1 time unit '01' : 2 time unit '10' : 3 time unit

- '11': 4 time unit
- [5:4] Period 1

Define the OFF time based on time unit set in PWM-N setup register

lete

- '00' : 1 time unit
- '01' : 2 time unit
- '10' : 3 time unit
- '11': 4 time unit

[3:1] Repetition

Set the repetition of programmed sequence (pair of period 0 and period 1)

- '000' : Infinite repetition
- '001' : Execute only one pair
- '010' : Execute 2 pairs
- '011' : Execute 3 pairs
- '100' : Execute 4 pairs
- '101' : Execute 5 pairs
- '110' : Execute 6 pairs
- '111' : Execute 7 pairs
- [0] Order

Set the order of period 0 and period 1

- '1' : sequence = period 1 and then period 0
- '0' : sequence = period 0 and then eriod 1

)bsolf

PWM-N ramp rate register

PWM n RAMP RATE

Address: 0x42, 0x46, 0x4A, 0x4E, 0x52, 0x56, 0x5A, 0x5E

Type:

0x00 **Reset:**

Description: Setting of ramp rate

RW

7	6	5	4	3	2	1	0		
INV	Reserved		RampDown		RampUp				
RW	RW	RW	RW RW RW			RW	RW		
0	0	0	0	0	0	0	0		
	[7] INV LED driving/sinking mode Write '1' for LED sinking mode (HIGH = LED Off, LOW = LED On) Write '0' for LED driving mode (HIGH = LED On LOW = LED Off								

LED driving/sinking mode Write '1' for LED sinking mode (HIGH = LED Off, LOW = LED On) Write '0' for LED driving mode (HIGH = LED On, LOW = LED Off solete

- [6] Reserved
- [5:3] RampDown
 - Set the PWM ramp down rate
 - '000' : 1/4 of time unit per brightness level change
 - '001': 1/8 of time unit per brightness level change
 - '010' : 1/16 of time unit per brightness level change
 - '011': 1/32 of time unit per brightness level change
 - '100' : 1/64 of time unit per brightness level change
 - '101': 1/128 of time unit per brightness level change
 - '110' : reserved
 - '111' : reserved
- [2:0] RampUp
 - Set the PWM ramp up rate
 - '000' : 1/4 of time unit per brightness level change
 - '001' : 1/8 of time unit per brightness level change
 - '010' : 1/16 of time unit per brightness level change
 - '011' : 1/32 of time unit per brightness level change
 - '100' : 1/64 of time unit per brightness level change
 - '101' : 1/128 of time unit per brightness level change
 - '110' : reserved
 - '111' : reserved

)bsole

STMPE16M31PX

PWM-N trigger register

PWM_n_TRIG

Address: 0x43, 0x47, 0x4B, 0x4F, 0x53, 0x57, 0x5B, 0x5F

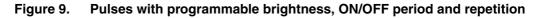
RW Type:

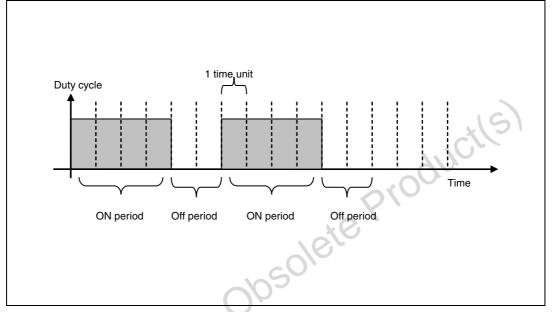
Reset: 0x00

Description: Setting of touch sensor-triggered PWM.

7	6	5	4	3	2	1	0
RESERVED	E	N			TS_CH		
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0
	 [7:6] RESERVED [6:5] EN: Write '1' to enable touch sensor-triggered PWM function Write '0' to disable touch sensor-triggered PWM function 						

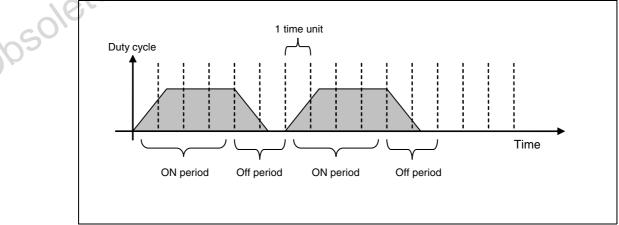
[4:0] TS_CH


Define the touch sensor channel which is set as trigger of the corresponding PWM channel.


The PWM cannot be programmed to be triggered by a proximity sensing input. Note: .m. obsolete Productls

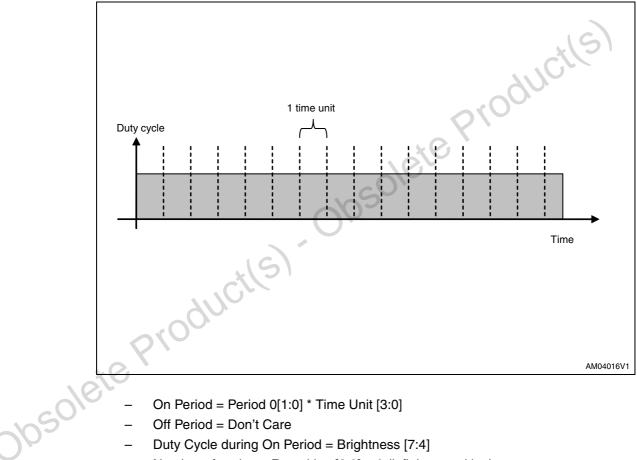
12 Basic PWM programming

The PWM controllers are capable of generating the following brightness patterns:



The registers need to be programmed for this sequence:

- On period = Period 0[1:0] * Time Unit [3:0]
- Off period = Period 1[1:0] * Time Unit [3:0]
- Duty cycle during on period = Brightness [7:4]
- Number of cycles = Repetition [3:0]
- Ramp-mode is disabled



The registers need to be programmed for this sequence :

- On Period = Period 0[1:0] * Time Unit [3:0] _
- Off Period = Period 1[1:0] * Time Unit [3:0] _
- Duty cycle during On Period = Brightness [7:4]
- Number of cycles = Repetition [3:0]
- Ramp-Mode is enabled _
- Ramp Up/Down Rate is programmable

Figure 11. Fixed brightness output

- On Period = Period 0[1:0] * Time Unit [3:0]
- Off Period = Don't Care
- Duty Cycle during On Period = Brightness [7:4]
- Number of cycles = Repetition [3:0] = 0 (infinite repetition)

12.1 Interrupt on basic PWM controller

A basic PWM controller could be programmed to generate interrupt on completion of blinking sequence. User needs to consider:

obsolete Product(s). Obsolete Product(s)

a) Each basic PWM controller has its own bit in interrupt enable/status registers.

If enabled, the completion in any of the PWM controllers triggers an interrupt. No interrupt will be generated if infinite repetition is set.

13 Touch sensor controller

The STMPE16M31PX device uses the STMicroelectronics' patent pending capacitive front end. The capacitive sensor is configure by the following registers:

Address	Register Name	Reset Value	R/W	Description
0x70	CH_SEN_CTRL	0x00	RW	Capacitive sensor control
0x72 - 0x73	CH_SEL	0x0000	RW	Selects active capacitive channels
0x76	CAL_INT	0x00	RW	10mS – 64S calibration interval
0x77	CAL_MOD	0x00	RW	Selects calibration model
0x78	MAF_SET	0x00	RW	Median averaging filter (MAF) setting
0x7C	DATA_TYPE	0x00	RW	Selects type of data available in channel data ports. 0x01: TVR 0x02: EVR 0x03: Channel delay 0x04: Impedance (13-bit) 0x05: Calibrated impedance (13-bit) 0x06: Locked impedance (13-bit)
0xC0-0xDF	CH_DATA-n	0x0000	R/W	Channel data based on channel data type
tepro	oducilsi			

Table 13. Touch sensor controller registers

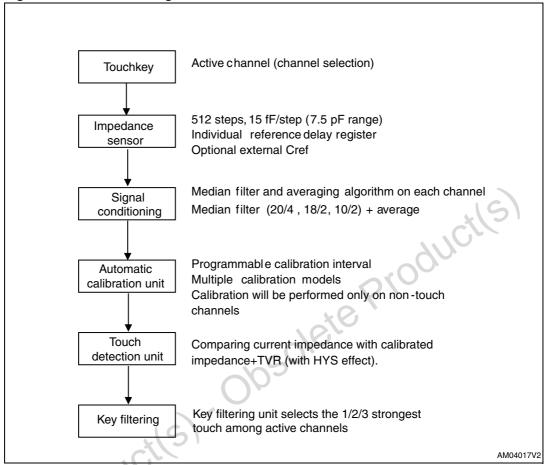


Figure 12. Touch sensing module flowchart

13.1 Sampling rate calculation

The capacitive sensor operates with a 2 MHz base clock, a single capacitive sensor scans up to 16 active channels.

The SCLK_DIV divides the sensor clock by 32-1024, giving 2 kHz-67.5 kHz sensor clock.

For capacitive sensing, a PRBS sequence is utilized to remove the effect of surrounding noise. This PRBS has an average value of 4.5.

The effective total sampling rate is thus 2 kHz-67.5 kHz divided by 4.5, giving 440 Hz - 14 kHz.

If all 16channels of capacitive sensors are active, the channel conversion rate is thus 440 Hz/16 = 27.5 Hz (Min), 14 kHz/16 = 875 Hz (Max)

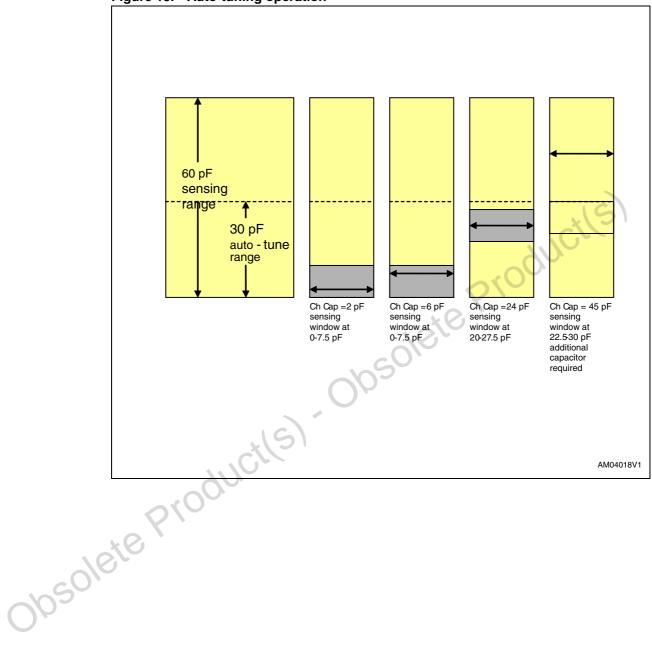
Using the maximum MAF setting (18 remove 2), the maximum filtered channel output rate is 875 Hz/18 = 48.6 Hz.

13.2 Sensor resolution

The capacitive sensor hardware in the STMPE16M31PX devices has a sensitivity of 15 fF and a range of 512 steps giving it a dynamic range of 7.5 pF.

The impedance reading is the output of an internal MAF (median averaging filter). As up to 16 samples are taken for each reading, the impedance reading is the sum of 16 of 9-bit samples.

To allow maximum consistency, the 3 impedance readings are **always** 13-bit, whichever MAF setting is used.

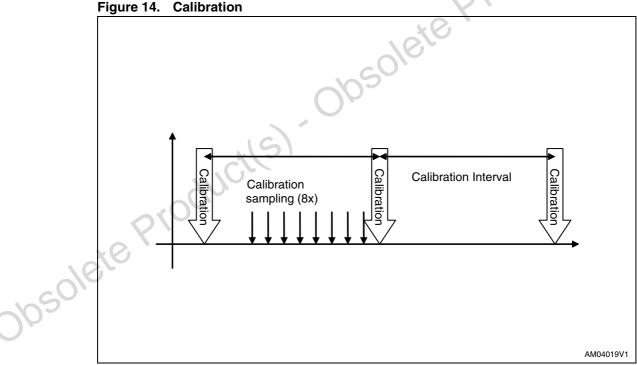

The touch variance (TVR) and environmental variance (EVR) registers are specified in a 9-bit format. For comparison with the impedances, the TVR and EVR would be internally shifted 4 bits up.

13.3 Auto-tuning

The capacitive sensor hardware in the STMPE16M31PX devices has a sensitivity of 15 fF and a range of 512 steps giving it a dynamic range of 7.5 pF. This means that at any time, the device is able to sense a change in capacitance up to 7.5 pF. When the channel capacitance moves out of the 7.5 pF window, the auto tuning feature kicks in to ensure proper sensing operation.

Figure 13. Auto-tuning operation

Locked impedance 13.4


Locked impedance is data available in channel data the moment 0x06 is written into "channel data type register". Writing a different value into the "channel data type register" allows the locked impedance to be refreshed.

In actual application, software writes 0x06, reads locked impedance, writes 0x00, writes 0x06, and reads the next set of data.

For data type 0x04-0x05, data are constantly being refreshed, even as it is being accessed. If accessed slowly, the full set of data may have been sampled at significantly different time.

Calibration 13.5

Calibration event is performed in every period which is programmable from the calibration interval register (0x76). In each calibration event, 8 impedance samples are collected and averaged. The time period between samples is programmable from CAL_MOD (model register (0x77).

Figure 14. Calibration

CAP SEN CTRL

Capacitive sensor control register

Address:	0x70
Туре:	RW
Reset:	0x00

Description: This register controls the capacitive sensor's operation.

7	6	5	4	3	2	1	0			
CS_EN		HYS								
RW	RW	RW	RW	RW	RW	RW	RW			
0	0	0	0	0	0	0	0			
	[7] CS_EN Write '1' to enable the capacitive sensor module									

Write '0' to disable the capacitive sensor module

This bit should be set after all other touch sensor setting have been written. The changes in other setting when this bit is '1' is not allowed.

If ratio-engine or key-filter unit is used, this bit should only be set, after ratio-engine and keyfilter unit has been configured.

[6:1] HYS

TVR Hysteresis

When there is no touch, the value of TVR is used as threshold to determine touch condition. If touch is detected, the touch detection threshold is changed to TVR-(HYS*4), hence the effective value of hysteresis is 0-256.

[0] ForcedAT

Write '1' to initiate unconditional forced auto-tuning to center the static impedance value in the dynamic range. Prior sending this command, the calibration model must be set to mode '10' with auto-tuning enabled.

Read '1' if the auto-tuning process in progress Read '0' if the auto-tuning process has been completed.

It is required that upon start up the system, this command is called once.

When the auto-tuning is executed in the presence of finger on the sensor, the 'touch' status will become 'no-touch' after completion of the process. Once finger is removed, the auto-calibration will take care of this situation allowing the detection of next 'touch' event.

)psolet

CH_SEL

Channel selection register

Address:	0x72-0x73
Туре:	RW
Reset:	0x000000
Description:	This register configures the active capacitive sensing channels.

Bit 7-0 (0x72)

7	6	5	4	3	2	1	0
S7	S6	S5	S4	S3	S2	S1	SO
RW							
0	0	0	0	0	0	0	0

Bit 15-8 (0x73)

Bit 15-8 (0x73)							
7 6 5	4	3	2	1	0		
S15 S14 S13	S12	S11	S10	S9	S8		
RW RW RW	RW	RW	RW	RW	RW		
0 0 0	0	0	0	0	0		

[7:0] S-X

Write '1' to enable the corresponding capacitive sensor channel Write '0' to disable the corresponding capacitive sensor channel Jobsolete Produt

CAL_INT

Calibration interval configuration register

Address:	0x76
Туре:	RW
Reset:	0x00
Description:	This register configures the interval betweer

This register configures the interval between successive calibrations. Description:

7	6	5	4	3	2	1	0			
MULT	IPLIER			INTE	RVAL					
RW	RW	RW	RW RW RW F							
0	0	0	0	0	0	0	0			
	'00' for 3 '01' for 3 '10' for 3 '11' for 3 [5:0] INTERV Set the Calibrat	multiplier value 8 32 128 512	erval	n interval set in	Interval[5:0]	,0d.UC	<u>,(</u> 5)			

mut obsolete Production = Interval[5:0]*10 mS * multiplier.

Calibration mode register

CAL MOD

Address: 0x77 RW Type: **Reset:** 0x00

Description: This register configures the way calibration samples are collected, and the model of calibration algorithm.

7	6	5	4	3	2	1	0
		CSInterval	Мс	odel	Cal_EN		
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0
	Interval [2:1] IModel Set the '00' for	interval betwee = CSInterval[4 calibration mon normal auto-ca	l:0]*10mS del llibration	one calibration	eteP	rodul) ⁻

[2:1] IModel

'10' for auto-calibration with auto-tuning. In this mode channel reference delay is not accessible from I2C. The system will perform auto-tuning if the impedance is moving out of dynamic range. '01' is reserved

- '11' is reserved
- [0] Cal_EN

'1' to enable the auto-calibration '0' to disable the auto-calibration Jbsolete P

MAF_SET

Median averaging filter register

MAF_SET				Ν	<i>l</i> ledian ave	eraging filt	er register	
Address:	0x78							
Туре:	RW							
Reset:	0x00							
Description :	: This re	gister choose	es the mediar	n averaging fil	ter mode.			
7	6	5	4	3	2	1	0	
		Reserved	1		MAF_	Mode	MAF_EN	
RW	RW	RW	RW	RW	RW	RW	RW	
0	0	0	0	0	0	0	0	
	[0] MAF_E '1' Enat '0' Disa	collect 20 samp N ble the MAF ble the MAF	lles, remove 4	samples	o Data typ			
DATA_TYF	PE) (Data typ	be definition	on register	
Address:	0x7C							
Туре:	RW		SI					
Reset:	0x00	G C						
Description:		This register define the type of data to be accessed at capacitive channel data register.						
7	6	5	4	3	2	1	0	
DM		DW/	1	DE		D\\/	DW/	
RW	RW	RW	RW	RW	RW	RW	RW	

[7:0] N	NODE

0

0x01: TVR (9-bit) 0x02: EVR (9-bit) 0x03: Channel delay (6-bit) 0x04: Impedance (13-bit) 0x05: Calibrated impedance (13-bit) 0x06: Locked impedance (13-bit)

0

0

0

0

0

0

0

CH_DATA-n

CH_DATA-n	CHDATA-n registers (0-15)
Address:	0xC0-0xDF
Туре:	RW
Reset:	0x00
Description:	Capacitive sensor channel data. The type of data represented by this register depends on the channel data type register (0x7C).

LSB, address : 0xC0 + (2*N), N = channel number

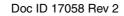
7	6	5	4	3	2	1	0			
			Channel N	l data [7:0]						
RW	RW	RW	RW	RW	RW	RW	RW			
0	0	0	0	0	0	0	0			
MSB, add	MSB, address : 0xC0 + (2*N+1), N = channel numer									

MSB, address : 0xC0 + (2*N+1), N = channel numer

7	6	5	4	3	2	O Y	0
			Channel N	data [15:8]	\mathbf{Q}		
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0
				50			

[16:0] Channel data

Display data selected by channel data type register (0x7C) , in duction of the contract o



57

13.6 Definition of data accessible through channel data register

Table 14.	Types of data accessible through the channel data register

	Data name	Definition
	TVR	TVR (touch variance register) is a threshold defined by system, of which, if the sense impedance changed by a magnitude more than the associated TVR, this channel is considered touched. The result of this comparison is directly accessible in the TOUCH_DET register.
	EVR	EVR (environmental variance register) is a threshold defined by system, of which, if the sensed impedance changed by a magnitude less than the associated EVR, this is considered an environmental change and the device will calibrate the internal reference (calibrated impedance) accordingly.
	Channel delay	Channel delay is used to tune the individual channel into effective measurement range. This field is 6-bit (0-63). Each bit in this field represents approximately 0.5 pF capacitance.
	Impedance	This field is a real time reflection of impedance measured at the corresponding channel. As capacitance is inversely proportional to impedance, this field reduces in value when capacitance on the channel increases.
		This field is of 13-bit length. The least significant 4 bits are results of internal processing and should not be used. The actual impedance data could be obtained by shifting the [Impedance] 4 bits to the right.
	Calibrated Impedance	Read-only This field contains an internal reference used by the device to decide whether a touch has occurred. This value is adjusted regularly (calibration) by the device automatically.
	Locked impedance	Data in this field is similar to data in impedance field, except that once this data type is chosen, the device maintains a complete set of impedance data in this field and stop refreshing it.
	Proc	This is useful for the application where it is required that all impedance data are sampled within a very short time.
obsole	je ,	

14 Touchkey and proximity sensing controller

The touchkey controller processes raw capacitance measurement data into "touch/notouch" boolean data for easy usage. The key filter unit provides additional flexibility by allowing the system to define a maximum number of keys that could be detected and considered active, based on the amount of impedance change detected.

The proximity sensor using a technique called 'dithering' to increase the sensitivity of one selected channel. Dithering factor (configurable from 4 - 32x) determines the sensitivity of proximity sensor.

Address	Register name	Reset value	R/W	Description
0x90	0x90 KFU_PROX_CTRL		R/W	Key filter and proximity sensor control
0x92 - 0x93 KEY_FILT_GROUI		0x0000	R/W	Define channels included in key filter group 1
0x96	PROX_CFG	0x00	R/W	Proximity configuration register
0x97	PTVR	0x00	R/W	Proximity variance register (PTVR)
0x98	PEVR	0x00	R/W	Proximity enviromental variance register
0xB0	PROX_DATA_0	0x00	R	Proximity data port 0
0xB1	PROX_DATA_1	0x00	R	Proximity data port 1
0x9A - 0x9B	KEY_FILT_DATA	0x0000	R	Filtered touchkey data
0xB4-0xB5	TOUCH_DET	0x0000	R	Touch detection register (real time)
tepro				

Table 15.Touchkey controller registers

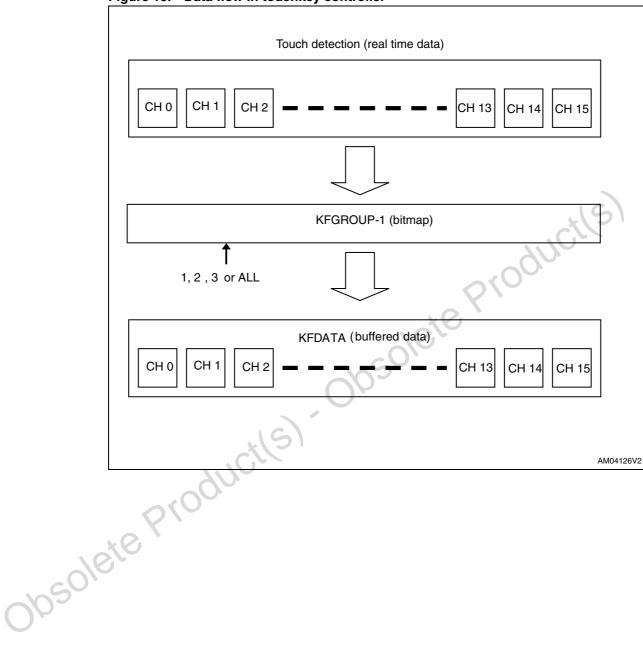


Figure 15. Data flow in touchkey controller

57

KEY_PROX_CTRL

Key filter unit configuration register

Address:	0x90	
Туре:	RW	
Reset:	0x00	
B	A	

Setting of key filter unit. **Description:**

7	6	5	4	3	2	1	0
	PROX_CHL_SELECT				PROX_EN	Mode_	_KFU1
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0

[7:4] PROX_CHL_SELECT:

Chooses one of the first 16 sensing channel as proximity sebsor input RESERVED PROX_EN:

- [3] RESERVED
- [2] PROX_EN:

Write '1' to enable proximity sensing operation. Write '0' to disable proximity sensing operation.

- [1:0] Mode_KFU
 - '00' for no filter
 - '01' for 1 highest impedance change
 - '10' for 2 highest impedance change
- '11' for 3 highest impedance change

KEY_FILT_GROUP-1

KFGROUP-1	
------------------	--

Address:	0x92-0x93 (KeyFilterMask1)
Туре:	R/W
Reset:	0x000000
	• • · · · · · · ·

Description: Configure the channels included in a group of key filter unit.

Bit 7-0 (0x92)

7	6	5	4	3	2	1	0
S7	S6	S5	S4	S3	S2	S1	SO
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0
Bit 15-8 (0x93)							
7	6	5	4	3	2	1	0

Bit 15-8 (0x93)

•	•						
7	6	5	4	3	2	1	0
S15	S14	S13	S12	S11	S10	S9	S8
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0

[15:0] S-X

obsolete Production Write '1' to include the corresponding channel in a group of Key Filter Unit

KEY_FILT_DATA

Key filter data register

Address:	0x9A-0x9B
Туре:	RW
Reset:	0x00000
Description:	Represent the status of (touch/no-touch), after being filtered by key filter unit. This register is always active and key status can be accessed from this register regardless of key filter unit activity.

Bit 7-0 (0x9A)

7	6	5	4	3	2	1	0	
S7	S6	S5	S4	S3	S2	S1	S0	
RW	RW	RW	RW	RW	RW	RW	RW	
0	0	0	0	0	0	0	0	
Bit 15-8 (0x9B)								
7	6	5	4	3	2	1	0	

Bit 15-8 (0x9B)

7	6	5	4	3	2	1	0
S15	S14	S13	S12	S11	S10	S9	S8
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0

[15:0] S-X

obsolete Prodi Read '1' if the corresponding sensor channel status is 'touched'.

TOUCH_DET

Touchkey detection register

Address:	0xB4-B5
Туре:	RW
Reset:	0x0000
Description:	Represents the real time status of the touchkey input. This is a direct result of

comparison of sensed impedance with calibrated impedance (taking in account of hysteresis). This data is not buffered.

Bit 7-0 (0xB4)

7	6	5	4	3	2	1	0
S7	S6	S5	S4	S3	S2	S1	SO
RW	RW	RW	RW	RW	RW	RW	RW
0	0	0	0	0	0	0	0
Bit 15-8 (0xB5)							
7	6	5	4	3	2	1	0

Bit 15-8 (0xB5)

7 6 5 4 3 2 1 0 S15 S14 S13 S12 S11 S10 S9 S8	-	-						
S15 S14 S13 S12 S11 S10 S9 S8	7	6	5	4	3	2	1	0
	S15	S14	S13	S12	S11	S10	S9	S8
RW RW RW RW RW RW RW	RW	RW	RW	RW	RW	RW	RW	RW
0 0 0 0 0 0 0 0	0	0	0	0	0	0	0	0

[15:0] S-X

onding solutions of the solution of the soluti Read '1' if the corresponding sensor channel status is 'touched'

PROX_CFG

Proximity configuration register

Jucils

7	6	5	4	3	2	1	0
DITH	IERING	RESERVED	PROXIMI	TY CALIBRATION	ACCES	S MODE	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

-	
Туре:	RW

Reset:

Description:

[7:6] DITHERING FACTOR

Proximity configuration register.

00 - 4x

0x00

- 01 -8x
- 10 -16x
- 11-32x

The higher the dithering factor, the more sensitive the proximity sensing is. However, the speed obsolete will be slower.

[5] Reserved

[4:2] Proximity calibration interval:

- 000-1
- 001-2
- 010-4
- 011-8

100-16

Others: reserved

Controls the number of dithered impedance sampling between successive calibrations. Shorter calibration interval allows it to adapts quickly to changes in environmental factors, but reduces the sensitivity to slowly approaching hand.

- [1:0] Access mode:
 - 00-dithered impedance
 - 01- calibrated dithered impedance

others: reserved

)bsole

PTVR

Proximity variance register

Address:0x97Type:RWReset:0x00Description:Proximity variance register. Typical value is 0x08 - 0x20

obsolete Product(s). Obsolete Product(s)

PEVR

Proximity enviromental	variance register
------------------------	-------------------

Address:	0x98
Туре:	RW
Reset:	0x00
	–

Description: Proximity environmental variance register.

[7] Forced proximity calibration.

Writing '1' to this bit forces the proximity sensing module to use the current dithered impedance as calibrated dithered impedance. After writing '1' to this bit, I2C should monitor the calibration status bit (Prox Data Port 1, bit 6). On reading '1' in calibration status bit, I2C must write '0' in forced proximity calibration bit to complete the calibration action.

[6] EVR used for proximity detection. typically value of 0x02-0x05 is used.

PROX DATA PORT

Proximity DATA PORT

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PROX_STA	CAL_STA	RESERVED				Dithe	red Impe	edance/	calibrate	d dither	ed impe	dance			
R	R	R					-	· O	R						
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Address:		0xB0 (LSB)	, 0xB	1 (MS	5B)										
Туре:		R		10											
Reset:		0x00	. (Ľ.	51										
Description	on:	Proximity d	Jata port.												
	[7:6]	Proximity sta	tus: re	al-time	e statu	s of pr	oximity	/ sens	or						
	[14]	Calibration s	tatus:												
	.0.	Reads '1' if c	alibrat	ion is	comple	eted.									
	0,0	Reads '0' if I2	2C exe	ecutes	a force	ed calil	bration								
cO	[13]	Reserved													
03	[12:0]	13 bit dithere	d imp	edanc	e/calib	rated c	lithere	d impe	edance						
)~		The data rea	d in th	is loca	ation is	contro	olled by	/ the a	access	mode	setting	g in PF	ROX_T	RIG re	gister.

15 Maximum rating

Stressing the device above the rating listed in the "Absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.5	V
V _{IO}	GPIO aND vreg SUPPLY VOLTAGE	6	V
VESD (HBM)	ESD protection on each GPIO/TOUCH pin	8	KV
	mended operating conditions		

Table 16. Absolute maximum ratings	Table 16.	Absolute	maximum	ratings
------------------------------------	-----------	----------	---------	---------

15.1 Recommended operating conditions

Table 17. Recommended operating conditions

	Symbol	Parameter	Value	9	Unit
	Symbol Paramete		Min	Max	Onit
	V _{CC}	Supply voltage	1.65	1.95	V
	V _{IO}	GPIO supply voltage	2.7	5.5	V
	GPIO	GPIO input voltage	GND-0.5	VIO+0.5	KV
Obsole	tePr				

16 DC electrical characteristics

-40 to 85 °C unless stated otherwise.

Querra hash	Demonstern	To she she she is a	Value			Unit
Symbol	Parameter	Test conditions	Min	Тур	Мах	onit
Vcc	Core supply voltage		1.65	-	1.95	V
Vio	IO supply voltage		2.7	-	5.5	V
lactive	ACTIVE current	2 MHz/32 sensor clock, PROXIMITY engine active	-	600	900	μA
lactive	ACTIVE current	2 MHz/32 sensor clock, with/without touch, key only	-	400	600	μΑ
Isleep	SLEEP current	2 MHz/32 sensor clock, without touch	Ş	50	75	μA
Ihibernate	HIBERNATE current	No sensing capability. Hotkey available	-	5	8	μA
VIL	Input voltage low state (RESET/A0/A1/I2C)	V _{CC} = 1.8 V	-0.3V	-	0.35Vcc	V
VIH	Input voltage high state (RESET/A0/A1/I2C)	V _{CC} = 1.8 V	0.75Vc c	-	Vcc+0.3 V	V
VIL	Input voltage low state (GPIO)	V _{IO} = 2.7 - 5.5 V	-0.3V	-	0.35Vio	V
VIH	Input voltage high state (GPIO)	V _{IO} = 2.7 - 5.5 V	0.65Vio	-	Vio+0.3 V	V
VOL	Output voltage low state (GPIO)	V _{IO} = 2.7 - 5.5 V, I _{OL} = 12 mA	-0.3V	-	0.25Vio	V
voн	Output voltage high state (GPIO)	V _{IO} = 2.7- 5.5 V, I _{OL} = 12 mA	0.75Vio	-	Vio+0.3 V	v
I _{leakage}	Input leakage on all GPIO/touch pins	$V_{IO} = 5.5$ V, V_{CC} powered by V_{IO} , I/O set as input, 5.5 V applied to I/O	-	-	100	nA

Table 18. DC electrical characteristics

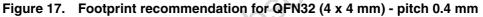
16.1 Capacitive sensor specification

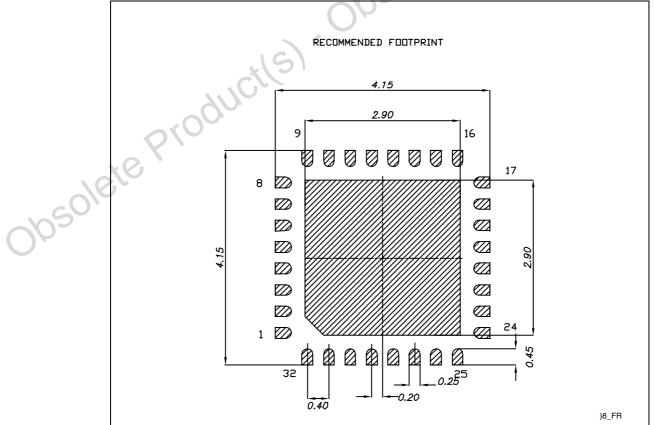

-40 to 85 °C unless stated otherwise.

	Symbol Parameter Test conditions		Value			Unit	
	Symbol	Parameter	lest conditions	Min	Тур	Max	Unit
Cs Capacitive sensor sensitivity		sensitivity	V _{IO} = 2.7 - 5.5 V, internal V _{REG}	12	16	25	fF
	Csvr	Variance of Cs across channels	V _{IO} = 2.7 - 5.5 V, internal V _{REG}	-	10	-	%
obsole	je P'		V _{IO} = 2.7 - 5.5 V, internal V _{REG}	P	091		

17 Package mechanical data

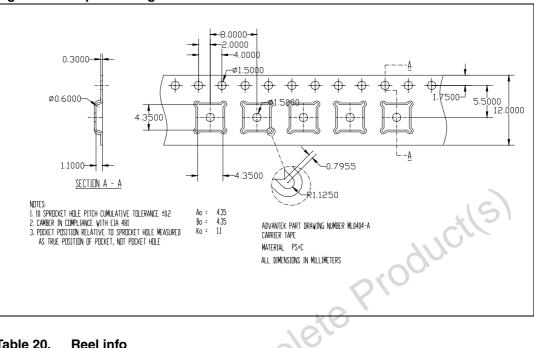
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.





Symbol	Millimeters			
	Min	Тур	Мах	
А	0.70	-	0.90	
A1	0.03	0.05	0.08	
A3	-	0.20	-	
b	0.19	0.21	0.28	
D	3.85	4.00	4.15	
D2	2.70	2.80	2.90	
E	3.85	4.00	4.15	
E2	2.70	2.80	2.90	
е	-	0.40	40	
e/2	-	0.20	-	
L	0.10	0.20	0.30	

 Table 19.
 Package mechanical data for QFN32 (4 x 4 mm) - pitch 0.4 mm)



Doc ID 17058 Rev 2

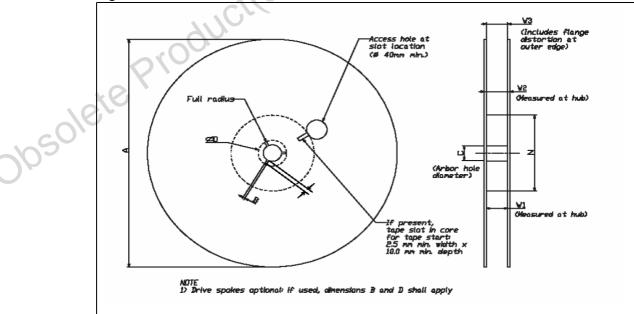


Table 20. **Reel info**

W	Ν	W1	W2	С
12	178 ±5 mm	12.4±2/-0	18.4	13±0.25

18 Revision history

Table 21.Document revision history

	Date	Revision	Changes
	08-Dec-2009	1	Initial release.
	11-Jan-2011	2	Document status promoted from preliminary data to datasheet. Updated QFN32 package mechanical data. Removed STMPE24M31PX part number.
obsole	teprod	ucils	stimezaminar part number.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 17058 Rev 2

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Capacitive Touch Sensors category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

CP8186AT LC717A10AJ-AH CP7709DT AT42QT1012-MAH AT42QT1110-MZ SMBTASK3KIT6 LC717A10AR-NH MCP2036T-I/MG CP3155T CAP1166-1-CZC-TR CM12-08EBP-KW1 CR12CN04DPO-E2 CR30SCF10ATO CR30SCF10DPO BCS M30BBI2-PSC15D-S04K CA30CAF16PAM1 VC12RN230 XT130B1FBL2 FDC1004DGSR FDC1004DGST CR18SCF05DPO CR30CN15DPO-E2 VC12RT23010M CDWM3020ZPM CPT212B-A01-GM D11SN6FP 17-8421-226 VC12RN924 AT42QT1050-MMH AT42QT1050-MMHR AT42QT1110-AU AT42QT1244-AU AT42QT1244-AU AT42QT1481-AUR OTBA5L OTBVR81LQD PBCL22T QS18VN6DB SM31RDLBQD AT42QT1111-MU AT42QT2100-MUR AT42QT2120-MMHR VTBN6LQ MTCH6102-IMV CAP1128-1-BP-TR CA30CAF16PA STMPE16M31QTR STMPE16M31PXQTR STM8T143-EVAL XT230A1PAL2