STB100NF04T4, STP100NF04

Automotive-grade N-channel $40 \mathrm{~V}, 4.3 \mathrm{~m} \Omega$ typ., 120 A STripFET ${ }^{\text {тм }}$ II Power MOSFET in a D²PAK and TO-220

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	VDS	$\mathbf{R}_{\text {DS(on) }}$ max.	$\mathbf{I D}_{\mathbf{D}}$	$\mathbf{P}_{\text {tot }}$
STB100NF04T4	40 V	$4.6 \mathrm{~m} \Omega$	120 A	300 W
STP100NF04	40 V	$4.6 \mathrm{~m} \Omega$	120 A	300 W

- AEC-Q101 qualified
- Exceptional dv/dt capability
- 100% avalanche tested
- Low gate charge

Applications

- Switching applications

Description

These Power MOSFETs have been developed using STMicroelectronics' unique STripFET process, which is specifically designed to minimize input capacitance and gate charge. This renders the devices suitable for use as primary switch in advanced high-efficiency isolated DCDC converters for telecom and computer applications, and applications with low gate charge driving requirements.

Table 1: Device summary

Order code	Marking	Package	Packing
STB100NF04T4	B100NF04	D2PAK	Tape and reel
STP100NF04	P100NF04	TO-220	Tube

Contents

1 Electrical ratings 3
2 Electrical characteristics 4
2.1 Electrical characteristics (curves) 6
3 Spice thermal model 10
4 Test circuits 11
5 Package information 12
5.1 D2PAK packing information 12
5.2 D2PAK packing information 15
5.3 TO-220 package information 17
6 Revision history 19

1

 Electrical ratingsTable 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V ${ }_{\text {dS }}$	Drain-source voltage	40	V
VGs	Gate- source voltage	± 20	V
$\mathrm{ID}^{(1)}$	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	120	A
$1 \mathrm{D}^{(1)}$	Drain current (continuous) at $\mathrm{T}_{\mathrm{c}}=100^{\circ} \mathrm{C}$	120	A
ldm ${ }^{(2)}$	Drain current (pulsed)	480	A
Ртот	Total dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	300	W
$\mathrm{dv} / \mathrm{dt}{ }^{(3)}$	Peak diode recovery voltage slope	6	V/ns
$\mathrm{EAS}^{(4)}$	Single pulse avalanche energy	1.2	J
T_{j}	Operating junction temperature range	- 55 to 175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range		

Notes:

${ }^{(1)}$ Current limited by package
${ }^{(2)}$ Pulse width limited by safe operating area.
${ }^{(3)}$ Isd $\leq 120 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 300 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {(BR) }} \mathrm{DSs}, \mathrm{Tj} \leq \mathrm{T}_{\text {JMax }}$
${ }^{(4)}$ Starting $\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{ID}=60 \mathrm{~A}, \mathrm{~V} D=30 \mathrm{~V}$.

Table 3: Thermal data

Symbol	Parameter	Value		Unit
		D 2 PAK	TO-220	
Rthj-case	Thermal resistance junction-case	0.5		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rthj-pcb $^{(1)}$	Thermal resistance junction-pcb	35		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rthj-amb	Thermal resistance junction-ambient		62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:

${ }^{(1)}$ When mounted on a 1 -inch² FR-4 board, $20 z \mathrm{Cu}$.

2 Electrical characteristics

($\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {(BR) }{ }^{\text {dSS }}}$	Drain-source breakdown voltage	$\mathrm{ld}=250 \mu \mathrm{~A}, \mathrm{~V} \mathrm{GS}=0 \mathrm{~V}$	40			V
Idss	Zero gate voltage drain current	$\mathrm{V}_{\mathrm{DS}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}^{(1)} \end{aligned}$			10	$\mu \mathrm{A}$
Igss	Gate body leakage current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			± 100	nA
$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	Gate threshold voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2		4	V
RDS(on)	Static drain-source on- resistance	$\mathrm{VGS}=10 \mathrm{~V}, \mathrm{ld}=50 \mathrm{~A}$		4.3	4.6	$\mathrm{m} \Omega$

Notes:

${ }^{(1)}$ Defined by design, not subject to production test

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{C}_{\text {iss }}$	Input capacitance	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	-	5100		pF
Coss	Output capacitance		-	1300		pF
Crss	Reverse transfer capacitance		-	160		pF
Q_{g}	Total gate charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=32 \mathrm{~V}, \mathrm{ID}=120 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$ (see Figure 21: "Test circuit for gate charge behavior")	-	110	150	nC
$\mathrm{Qgs}_{\text {s }}$	Gate-source charge		-	35		nC
$Q_{g d}$	Gate-drain charge		-	70		nC
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-on delay time	$\mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=60 \mathrm{~A}$, $\mathrm{R}_{\mathrm{G}}=4.7 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ (see Figure 20: "Test circuit for resistive load switching times" and Figure 25: "Switching time waveform")	-	35		ns
tr	Rise time		-	220		ns
td (off) $^{\text {d }}$	Turn-off delay time		-	80		ns
tf	Fall time		-	50		ns

Table 6: Source drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
ISD	Source-drain current				120	A
$\mathrm{ISDM}^{(1)}$	Source-drain current (pulsed)		-		480	A
$\mathrm{V}_{\text {SD }}{ }^{(2)}$	Forward on voltage	$\mathrm{I}_{\mathrm{SD}}=120 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			1.3	V
tr	Reverse recovery time	$\begin{array}{\|l} \hline \mathrm{ISD}=120 \mathrm{~A}, \mathrm{~V} \mathrm{DD}=20 \mathrm{~V}, \\ \text { di/dt }=100 \mathrm{~A} / \mu \mathrm{s} \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}= \\ 150^{\circ} \mathrm{C} \\ \text { (see Figure 22: "Test } \\ \text { circuit for inductive load } \\ \text { switching and diode } \\ \text { recovery times") } \\ \hline \end{array}$	-	75	-	ns
$\mathrm{t}_{\text {(}(\mathrm{ff})}$	Reverse recovery charge		-	185	-	nC
t_{f}	Reverse recovery current		-	5	-	A

Notes:

${ }^{(1)}$ Pulse width limited by safe operating area.
${ }^{(2)}$ Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 2: Power dissipation vs. temperature

Figure 6: Transconductance

Figure 3: Max Id current vs. temperature

Figure 5: Transfer characteristics

Figure 7: Static drain-source on-resistance

Figure 8: Gate charge vs. gate-source voltage

Figure 10: Normalized gate threshold voltage vs. temperature

Figure 9: Capacitance variations

Figure 11: Normalized on-resistance vs. temperature

Figure 12: Source-drain diode forward characteristics

Figure 13: Normalized BVDSS vs. temperature

Figure 14: Thermal resistance Rthj-pcb vs. PCB copper area

Figure 15: Thermal impedance

Figure 16: Max power dissipation vs. PCB copper area

Figure 17: Safe operating area

The previous curve give the safe operating area for unclamped inductive loads, single pulse or repetitive, under the following conditions:
$P_{\text {D(AVE })}=0.5^{*}\left(1.3^{*} B V_{\text {DSs }}{ }^{*} I_{\text {AV }}\right)$
$\mathrm{E}_{\mathrm{AS}(\mathrm{AR})}=\mathrm{P}_{\mathrm{D}(\mathrm{AVE})}{ }^{*} \mathrm{~T}_{\mathrm{AV}}$
Where:
l_{AV} is the allowable current in avalanche
$\mathrm{P}_{\mathrm{D}(\mathrm{AVE})}$ is the average power dissipation in avalnche(single pulse)
$t_{A V}$ is the time in avalanche
To de rate above $25^{\circ} \mathrm{C}$, at fixed IAV, the following equation must be applied:
IAV $=2^{*}($ Tjmax-TCASE $) /\left(1.3^{*} B v d s s^{*} Z t h\right)$
Where:
Zth $=K^{*}$ Rth is the value coming from normalized thermal response at fixed pulse width equal to $T_{A V}$

3 Spice thermal model

Figure 19: Spice model schematic

Table 7: Spice parameter

Parameter	Node	Value
CTHERM1	$5-4$	0.011
CTHERM1	$4-3$	0.0012
CTHERM3	$3-2$	0.05
CTHERM4	$2-1$	0.1
RTHERM1	$5-4$	0.09
RTHERM2	$4-3$	0.02
RTHERM3	$3-2$	0.11
RTHERM4	$2-1$	0.17

4 Test circuits

Figure 24: Unclamped inductive waveform

Figure 25: Switching time waveform

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

$5.1 \quad$ D2PAK packing information

Figure 26: D2PAK (TO-263) type A package outline

Table 8: D²PAK (TO-263) type A package mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
c	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50	7.75	8.00
D2	1.10	1.30	1.50
E	10		10.40
E1	8.50	8.70	8.90
E2	6.85	7.05	7.25
e		2.54	
e1	4.88		5.28
H	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

Figure 27: D²PAK (TO-263) recommended footprint (dimensions are in mm)

$5.2 \quad D^{2}$ PAK packing information

Figure 28: Tape outline

Figure 29: Reel outline

Table 9: D²PAK tape and reel mechanical data

Tape			Reel		
Dim.	mm		Dim.	mm	
	Min.	Max.		Min.	Max.
A0	10.5	10.7	A		330
B0	15.7	15.9	B	1.5	
D	1.5	1.6	C	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	T		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base quantity		1000
P2	1.9	2.1	Bulk quantity		1000
R	50				
T	0.25	0.35			
W	23.7	24.3			

5.3 TO-220 package information

Figure 30: TO-220 type A package outline

Table 11: TO-220 type A mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
c	0.48		0.70
D	15.25		15.75
D1			1.27
E	10.00		10.40
e	2.40		2.70
e1	4.95		1.32
F	1.23		6.60
H1	6.20		2.72
J1	2.40		14.00
L	13.00		3.93
L1	3.50		3.85
L20			28.90
L30			
øP	3.75		
Q	2.65		

6 Revision history

Table 12: Document revision history

Date	Revision	Changes
23-Mar-2005	2	New template
01-Mar-2006	3	Removed I2PAK and inserted D²PAK.
04-Sep-2006	4	New template,no content change
20-Feb-2007	5	Typo mistake on page 1
16-Mar-2013	6	Minor text changes - Modified: Figure 17- Updated: Section 4: Package mechanical data and Section 5: Packaging mechanical data
21-Nov-2016	7	Updated title in cover page. Updated Section 2: "Electrical characteristics". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7

