STD3N80K5, STF3N80K5, STP3N80K5, STU3N80K5

N-channel 800 V, 2.8Ω typ., 2.5 A MDmesh ${ }^{\text {TM }}$ K5 Power MOSFETs in DPAK, TO-220FP, TO-220 and IPAK

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V ${ }_{\text {ds }}$	RDS(on) max.	ID	Рtot
STD3N80K5	800 V	3.5Ω	2.5 A	60 W
STF3N80K5				20 W
STP3N80K5				
STU3N80K5				W

- Industry's lowest $\mathrm{R}_{\mathrm{DS}(\text { on })} \mathrm{x}$ area
- Industry's best FoM (figure of merit)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications

Description

These very high voltage N -channel Power MOSFETs are designed using MDmesh ${ }^{\text {TM }}$ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STD3N80K5		DPAK	Tape and reel
STF3N80K5	3N80K5	TO-220FP	Tube
		TO-220	
STP3N80K5		IPAK	
STU3N80K5			

Contents

1 Electrical ratings 3
2 Electrical characteristics 4
2.1 Electrical characteristics (curves) 6
3 Test circuits 9
4 Package information 10
4.1 DPAK (TO-252) type A package information 10
4.2 DPAK (TO-252) type E package information. 13
4.3 DPAK (TO-252) packing information. 15
4.4 TO-220FP package information 17
4.5 TO-220 type A package information 19
4.6 IPAK (TO-251) type A package information 21
5 Revision history 23

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value				Unit
		DPAK	TO-220FP	TO-220	IPAK	
$V_{G S}$	Gate-source voltage	± 30				V
ID	Drain current (continuous) at $\mathrm{TC}=25^{\circ} \mathrm{C}$	2.5				A
ID	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	1.6				A
$\mathrm{ID}^{(1)}$	Drain current (pulsed)	10				A
$\mathrm{P}_{\text {tot }}$	Total dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	60	20	60	60	W
Viso	Insulation withstand voltage (RMS) from all three leads to external heat-sink ($\mathrm{t}=1 \mathrm{~s}, \mathrm{Tc}=25^{\circ} \mathrm{C}$)		2.5			kV
$\mathrm{dv} / \mathrm{dt}^{(2)}$	Peak diode recovery voltage slope	4.5				
$\mathrm{dv} / \mathrm{dt}^{(3)}$	MOSFET dv/dt ruggedness	50				V/ns
T_{j}	Operating junction temperature range	-55 to 150				${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range					

Notes:

${ }^{(1)}$ Pulse width limited by safe operating area.
${ }^{(2)}{ }_{I S D} \leq 2.5 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{V}_{\mathrm{DS}}$ peak $<\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$.
${ }^{(3)} \mathrm{V}_{\mathrm{DS}} \leq 640 \mathrm{~V}$.

Table 3: Thermal data

Symbol	Parameter	Value				Unit	
			DPAK	TO-220FP	TO-220		
$R_{\text {thj-case }}$	Thermal resistance junction-case	2.08	6.25	2.08		${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$R_{\text {thi-amb }}$	Thermal resistance junction-ambient		62.5	62.5	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$R_{\text {thijpcb }}{ }^{(1)}$	Thermal resistance junction-pcb	50				${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Notes:

${ }^{(1)}$ When mounted on FR-4 board of 1 inch $^{2}, 2 \mathrm{oz} \mathrm{Cu}$.

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
$I_{A R}$	Avalanche current, repetitive or not repetitive (pulse width limited by $\left.T_{j m a x}\right)$	1	A
E_{AS}	Single pulse avalanche energy (starting $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{AR}}, \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}$)	65	mJ

2 Electrical characteristics

$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Table 5: On/off-state

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {(BR) }{ }^{\text {dSS }}}$	Drain-source breakdown voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{ID}=1 \mathrm{~mA}$	800			V
Idss	Zero gate voltage drain current	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=800 \mathrm{~V}$			1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=800 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}^{(1)} \end{aligned}$			50	$\mu \mathrm{A}$
Igss	Gate body leakage current	$\mathrm{V} \mathrm{DS}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
VGS(th)	Gate threshold voltage	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{ld}=100 \mu \mathrm{~A}$	3	4	5	V
RDS(on)	Static drain-source on-resistance	$\mathrm{VGS}=10 \mathrm{~V}, \mathrm{ld}=1 \mathrm{~A}$		2.8	3.5	Ω

Notes:

${ }^{(1)}$ Defined by design, not subject to production test.

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
Ciss	Input capacitance	$\begin{aligned} & \mathrm{VDS}=100 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	-	130	-	pF
Coss	Output capacitance		-	14	-	pF
Crss	Reverse transfer capacitance		-	0.6	-	pF
$\mathrm{C}_{0(t r)^{(1)}}$	Equivalent capacitance time related	V GS $=0 \mathrm{~V}, \mathrm{~V}$ DS $=0$ to 640 V	-	20	-	pF
$\mathrm{Co}_{\text {(er) }}{ }^{(2)}$	Equivalent capacitance energy related		-	9	-	pF
R_{g}	Intrinsic gate resistance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{ld}=0 \mathrm{~A}$	-	15.5	-	Ω
Q_{g}	Total gate charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=640 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \text { to } 10 \mathrm{~V} \end{aligned}$ (see Figure 19: "Test circuit for gate charge behavior")	-	9.5	-	nC
Q_{gs}	Gate-source charge		-	1.5	-	nC
Q_{gd}	Gate-drain charge		-	7.5	-	nC

Notes:

${ }^{(1)} \mathrm{C}_{o(t r)}$ is a constant capacitance value that gives the same charging time as $\mathrm{C}_{\text {oss }}$ while V_{DS} is rising from 0 to 80% VDss.
${ }^{(2)} \mathrm{C}_{0 \text { (er) }}$ is a constant capacitance value that gives the same stored energy as Coss while $V_{D S}$ is rising from 0 to 80\% VDss.

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {d}(0 n) ~}^{\text {a }}$	Turn-on delay time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=400 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=1.25 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=4.7 \Omega \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$ (see Figure 18: "Test circuit for resistive load switching times" and Figure 23: "Switching time waveform")	-	8.5	-	ns
tr	Rise time		-	10.5	-	ns
$\mathrm{t}_{\text {d(off) }}$	Turn-off delay time		-	20.5	-	ns
$\mathrm{tf}^{\text {f }}$	Fall time		-	25	-	ns

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
Isd	Source-drain current		-		2.5	A
Isbm ${ }^{(1)}$	Source-drain current (pulsed)		-		10	A
$\mathrm{VSD}^{(2)}$	Forward on voltage	$\mathrm{ISD}=2.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-		1.5	V
trr	Reverse recovery time	$\mathrm{ISD}=2.5 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$, $V_{D D}=60 \mathrm{~V}$ (see Figure 20: "Test circuit for inductive load switching and diode recovery times')	-	265		ns
Qrr	Reverse recovery charge		-	1.2		$\mu \mathrm{C}$
IRRM	Reverse recovery current		-	9.2		A
$t_{\text {rr }}$	Reverse recovery time	$\mathrm{I}_{\mathrm{sD}}=2.5 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$, $\mathrm{V}_{\mathrm{DD}}=60 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ (see Figure 20: "Test circuit for inductive load switching and diode recovery times")	-	430		ns
Qrr	Reverse recovery charge		-	1.9		$\mu \mathrm{C}$
IRRM	Reverse recovery current		-	8.8		A

Notes:

${ }^{(1)}$ Pulse width limited by safe operating area
${ }^{(2)}$ Pulsed: pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{(\mathrm{BR}) \mathrm{GsO}}$	Gate-source breakdown voltage	$\mathrm{I}_{\mathrm{GS}}= \pm 1 \mathrm{~mA}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~A}$	± 30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

2.1 Electrical characteristics (curves)

Figure 2: Safe operating area for DPAK and IPAK

Figure 3: Thermal impedance for DPAK and IPAK

Figure 4: Safe operating area for TO-220FP

Figure 5: Thermal impedance for TO-220FP

Figure 6: Safe operating area for TO-220

Figure 7: Thermal impedance for TO-220

Figure 10: Gate charge vs gate-source voltage

Figure 11: Static drain-source on-resistance

Figure 13: Output capacitance stored energy

Figure 15: Normalized on-resistance vs temperature

Figure 16: Normalized VDS vs temperature

Figure 17: Source-drain diode forward characteristics

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

4.1 DPAK (TO-252) type A package information

Figure 24: DPAK (TO-252) type A package outline

Table 10: DPAK (TO-252) type A mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
c	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
E	6.40		6.60
E1	4.60	4.70	4.80
e	2.16	2.28	2.40
e1	4.40		4.60
H	9.35		10.10
L	1.00		1.50
(L1)	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

Figure 25: DPAK (TO-252) type A recommended footprint (dimensions are in mm)

4.2 DPAK (TO-252) type E package information

Figure 26: DPAK (TO-252) type E package outline

Table 11: DPAK (TO-252) type E mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	2.18		2.39
A2			0.13
b	0.65		0.884
b4	4.95		5.46
c	0.46		0.61
c2	0.46		0.60
D	5.97		6.22
D1	5.21		
E	6.35		6.73
E1	4.32		
e			10.34
e1	9.94		1.78
H	1.50		1.272
L			1.02
L1	0.89		
L2			
L4			

Figure 27: DPAK (TO-252) type E recommended footprint (dimensions are in mm)

4.3 DPAK (TO-252) packing information

Figure 28: DPAK (TO-252) tape outline

Figure 29: DPAK (TO-252) reel outline

Table 12: DPAK (TO-252) tape and reel mechanical data

Tape			Reel		
Dim.	$\mathbf{m m}$		Dim.	$\mathbf{m m}$	
	Min.	Max.		Min.	Max.
A0	6.8	7	A		330
B0	10.4	10.6	B	1.5	
B1		12.1	C	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	T		22.4
K0	2.55	2.75			
P0	3.9	4.1		Base qty.	2500
P1	7.9	8.1		Bulk qty.	2500
P2	1.9	2.1			
R	40				
T	0.25	0.35			
W	15.7	16.3			

4.4 TO-220FP package information

Figure 30: TO-220FP package outline

Table 13: TO-220FP package mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.4		4.6
B	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
H	10		10.4
L2	28.6		30.6
L3	9.8		10.6
L4	2.9		3.6
L5	15.9		16.4
L6	9		9.3
L7	3		3.2
Dia			

4.5 TO-220 type A package information

Figure 31: TO-220 type A package outline

Table 14: TO-220 type A package mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
c	0.48		0.70
D	15.25		15.75
D1			1.27
E	10.00		10.40
e	2.40		2.70
e1	4.95		1.32
F	1.23		6.60
H1	6.20		2.72
J1	2.40		14.00
L	13.00		3.93
L1	3.50		3.40
L20			2.90
L30			
¢P	3.75		
Q	2.65		

4.6 IPAK (TO-251) type A package information

Figure 32: IPAK (TO-251) type A package outline

Table 15: IPAK (TO-251) type A package mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
B5	0.45		
c	0.48		0.30
c2	6.00		0.60
D	6.40		6.20
E	4.40		6.60
e			46.10
e1	9.00		9.60
H	0.80		1.20
L			1.00
L1			
L2			
V1			

5 Revision history

Table 16: Document revision history

Date	Revision	Changes
12-Jul-2013	1	First release.
15-Jan-2014	2	- Modified: PTOT and EAS values in Table 2 - Modified: Rthj-case values in Table 3 - Modified: the entire typical values in Table 5 and 6 - Modified: ISD and ISDM max values and typical values in Table 7 - Updated: Table 24 and Table 9 - Added: Section 2.1: Electrical characteristics (curves) - Minor text changes
17-Jan-2014	3	- Modified: Figure 8 and 9 - Minor text changes
17-Jul-2017	4	Updated Table 7: "Switching times" and Section 4: "Package information". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7

