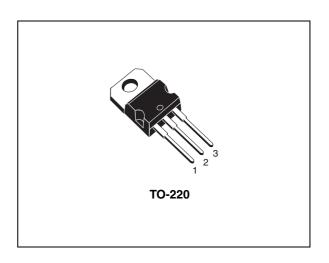


STP40NF12

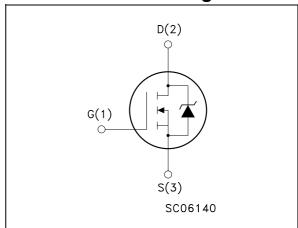
N-channel 120V - 0.028Ω - 40A TO-220 Low gate charge STripFET™ II Power MOSFET

General features

Туре	V _{DSS}	R _{DS(on)}	I _D
STP40NF12	120V	<0.032Ω	40A


- Exceptional dv/dt capability
- 100% avalanche tested
- Application oriented characterization

Description


This Power MOSFET series realized with STMicroelectronics unique STripFET process has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced highefficiency isolated DC-DC converters for Telecom and Computer application. It is also intended for any application with low gate charge drive requirements.

Applications

■ Switching application

Internal schematic diagram

Order codes

Part number	Part number Marking Package		Packaging
STP40NF12	P40NF12	TO-220	Tube

Contents STP40NF12

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	. 4
	2.1 Electrical characteristics (curves)	. 6
3	Test circuit	. 8
4	Package mechanical data	. 9
5	Revision history	11

STP40NF12 Electrical ratings

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage (v _{gs} = 0)	120	V	
V _{GS}	Gate- source voltage	±20	V	
I _D	Drain current (continuous) at T _C = 25°C	40	Α	
I _D	Drain current (continuous) at T _C = 100°C	28		
I _{DM} ⁽¹⁾	Drain current (pulsed)	160	Α	
P _{TOT}	Total dissipation at T _C = 25°C 150			
	Derating factor	1		
dv/dt ⁽²⁾	Peak diode recovery voltage slope	14	V/ns	
E _{AS} (3)	Single pulse avalanche energy	150		
T _{stg}	storage temperature			
Tj	Max. operating junction temperature	- 55 to 175		

^{1.} Pulse width limited by safe operating area

Table 2. Thermal data

R _{thj-case}	Thermal resistance junction-case Max	1	°C/W
R _{thj-a}	Thermal resistance junction-ambient Max	62.5	°C/W
T _I	Maximum lead temperature for soldering purpose	300	°C

^{2.} $I_{SD} \leq 40A$, di/dt $\leq 600A/\mu s$, $V_{DD} \leq V_{(BR)DSS}$, $T_j \leq T_{JMAX}$.

^{3.} Starting $T_j = 25^{\circ}C$, $I_D = 40A$, $V_{DD} = 50V$

Electrical characteristics STP40NF12

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 3. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown voltage	$I_D = 250 \mu\text{A}, V_{GS} = 0$	120			V
	Zero gate voltage	V _{DS} = Max rating			1	μΑ
I _{DSS}	Drain current (V _{GS} = 0)	V _{DS} =Max rating,T _C =125°C			10	μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	2.8	4	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10V, I _D = 20A		0.028	0.032	Ω

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	V _{DS} = 25V _, I _D =20A		40		S
C _{iss}	Input capacitance			1880		pF
C _{oss}	Output capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		265		pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$		110		pF
Qg	Total gate charge			60	80	nC
Q_{gs}	Gate-source charge	$V_{DD} = 80V, I_D = 40A,$ $V_{GS} = 10V$		11		nC
Q_{gd}	Gate-drain charge	165 151		21		nC

^{1.} Pulsed: Pulse duration = 300 µs, duty cycle 1.5.

Table 5. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time Rise time	$V_{DD} = 50$ V, $I_D = 20$ A $R_G = 4.7\Omega V_{GS} = 10$ V (see Figure 13)		28 63		ns ns
t _{d(off)}	Turn-off-delay time Fall time	V_{DD} = 50V, I_D = 20A, R_G = 4.7 Ω , V_{GS} = 10V (see Figure 13)		84 28		ns ns

Table 6. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
I _{SD}	Source-drain current				40	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				160	Α
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 40A, V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 40A, V_{DD} = 25V$ di/dt = 100A/ μ s, $T_j = 150$ °C (see Figure 15)		114 456 8		ns nC A

^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics STP40NF12

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

Figure 2. Thermal impedance

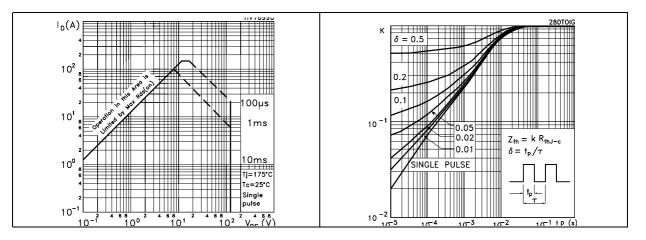


Figure 3. Output characteristics

Figure 4. Transfer characteristics

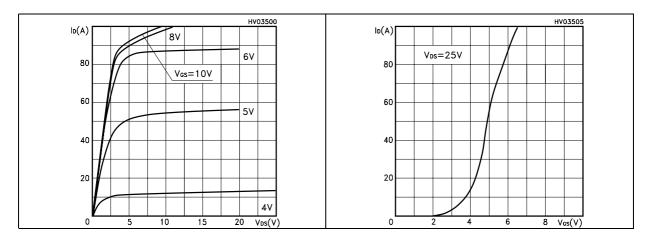


Figure 5. Transconductance

Figure 6. Static drain-source on resistance

Figure 7. Gate charge vs. gate-source voltage Figure 8. Capacitance variations

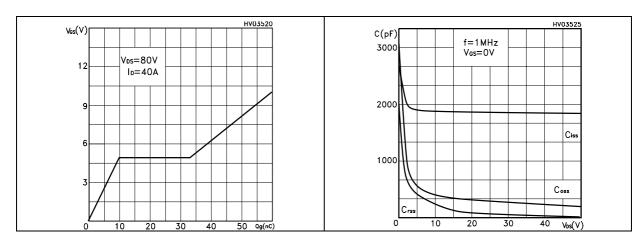


Figure 9. Normalized gate threshold voltage vs. temperature

Figure 10. Normalized on resistance vs. temperature

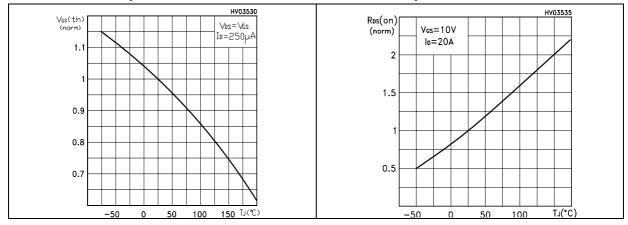
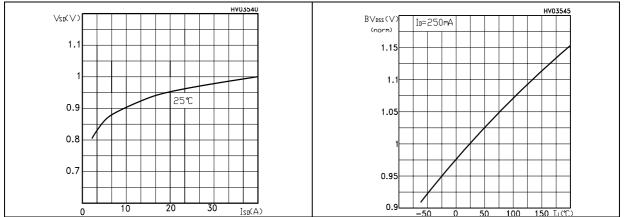



Figure 11. Source-drain diode forward characteristics

Figure 12. Normalized breakdown voltage vs. tj

4

Test circuit STP40NF12

3 Test circuit

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

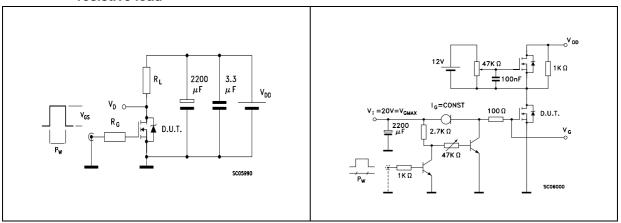


Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped Inductive load test circuit

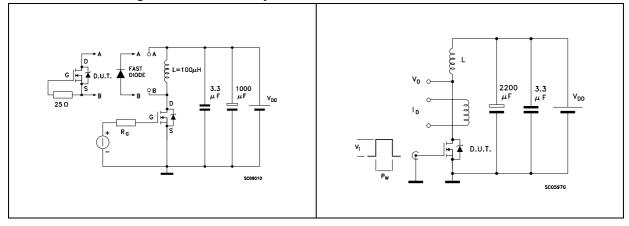
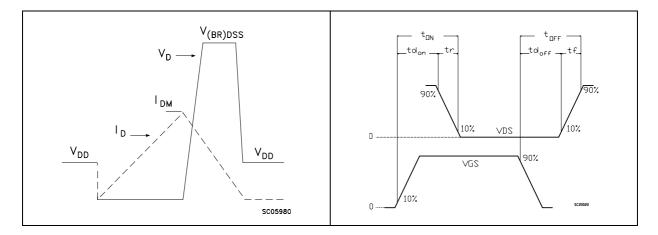
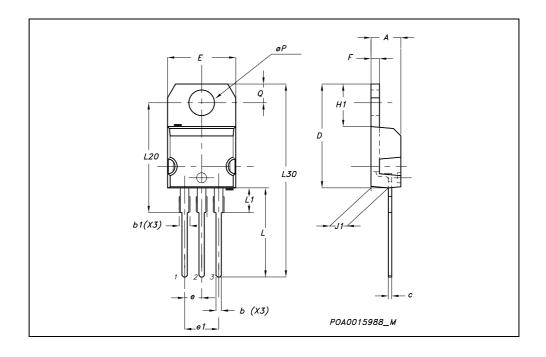



Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform



4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

TO-220 MECHANICAL DATA

DIM.		mm.			inch	
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
Е	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øΡ	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

STP40NF12 Revision history

5 Revision history

Table 7. Revision history

Date	Revision	Changes	
09-Sep-2004	1	First version.	
17-Aug-2006	2	The document has been reformatted.	
31-Jan-2007	3	Typo mistake on <i>Table 1</i> .	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C

IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI

DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384

NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956

NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF