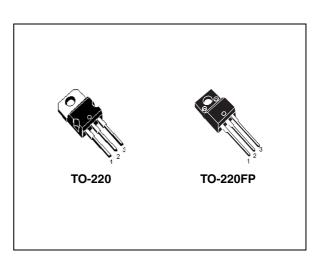


# STP5NK80Z STP5NK80ZFP

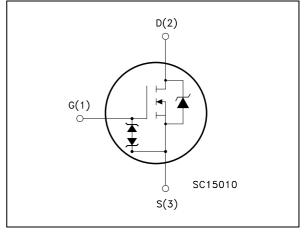
## N-channel 800V - 1.9Ω - 4.3A - TO-220/TO-220FP Zener-protected SuperMESH<sup>™</sup> Power MOSFET

### **General features**

| Туре        | V <sub>DSS</sub><br>(@Tjmax) | R <sub>DS(on)</sub> | I <sub>D</sub> |
|-------------|------------------------------|---------------------|----------------|
| STP5NK80Z   | 800 V                        | < 2.4 Ω             | 4.3 A          |
| STP5NK80ZFP | 800 V                        | < 2.4 Ω             | 4.3 A          |


- 100% avalanche tested
- Gate charge minimized
- Very low intrinsic capacitances
- Very good manufacturing repeatibility

## Description


The SuperMESH<sup>™</sup> series is obtained through an extreme optimization of ST's well established strip-based PowerMESH<sup>™</sup> layout. In addition to pushing on-resistance significantly down, special care is taken to ensure a very good dv/dt capability for the most demanding applications. Such series complements ST full range of high voltage MOSFETs including revolutionary MDmesh<sup>™</sup> products.

## Applications

Switching application



## Internal schematic diagram



### Order codes

| Part number | Marking   | Package  | Packaging |
|-------------|-----------|----------|-----------|
| STP5NK80Z   | P5NK80Z   | TO-220   | Tube      |
| STP5NK80ZFP | P5NK80ZFP | TO-220FP | Tube      |

| August | 2006 |
|--------|------|
|--------|------|

## Contents

| 1 | Electrical ratings                      |
|---|-----------------------------------------|
| 2 | Electrical characteristics5             |
|   | 2.1 Electrical characteristics (curves) |
| 3 | Test circuit                            |
| 4 | Package mechanical data 11              |
| 5 | Packaging mechanical data 12            |



## 1 Electrical ratings

| Table I.                           | Absolute maximum ratings                                                                           |        |                     |      |
|------------------------------------|----------------------------------------------------------------------------------------------------|--------|---------------------|------|
| Symbol                             | Parameter                                                                                          | Val    | ue                  | Unit |
|                                    |                                                                                                    | TO-220 | TO-220FP            |      |
| V <sub>DS</sub>                    | Drain-source voltage ( $V_{GS} = 0$ )                                                              | 80     | 00                  | V    |
| V <sub>GS</sub>                    | Gate-source voltage                                                                                | ± 3    | 30                  | V    |
| ۱ <sub>D</sub>                     | Drain current (continuous) at $T_C = 25^{\circ}C$                                                  | 4.3    | 4.3 <sup>(1)</sup>  | А    |
| I <sub>D</sub>                     | Drain current (continuous) at $T_C=100^{\circ}C$                                                   | 2.7    | 2.7 <sup>(1)</sup>  | А    |
| I <sub>DM</sub> <sup>(2)</sup>     | Drain current (pulsed)                                                                             | 17.2   | 17.2 <sup>(1)</sup> | А    |
| P <sub>TOT</sub>                   | Total dissipation at $T_{C} = 25^{\circ}C$                                                         | 110    | 30                  | W    |
|                                    | Derating factor                                                                                    | 0.88   | 0.24                | W/°C |
| V <sub>ESD(G-S)</sub>              | Gate source ESD<br>(HBM-C=100pF, R=1.5KΩ)                                                          | 350    | 00                  | V    |
| dv/dt <sup>(3)</sup>               | Peak diode recovery voltage slope                                                                  | 4.     | 5                   | V/ns |
| V <sub>ISO</sub>                   | Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1s; $T_c$ = 25°C) | -      | 2500                | v    |
| T <sub>J</sub><br>T <sub>stg</sub> | Operating junction temperature<br>Storage temperature                                              | -55 tc | 0 150               | °C   |

#### Table 1. Absolute maximum ratings

1. Limited only by maximum temperature allowed

2. Pulse width limited by safe operating area

3.  $I_{SD} \leq 4.3A$ , di/dt 200A/µs,  $V_{DD} \leq V_{(BR)DSS}$ ,  $T_j \leq T_{JMAX}$ .

#### Table 2.Thermal data

| Symbol                | Parameter                                         | Value  |          | Unit |
|-----------------------|---------------------------------------------------|--------|----------|------|
|                       |                                                   | TO-220 | TO-220FP |      |
| R <sub>thj-case</sub> | Thermal resistance junction-case max              | 1.14   | 4.2      | °C/W |
| R <sub>thj-a</sub>    | Thermal resistance junction-ambient max           | 62     | .5       | °C/W |
| Τ <sub>Ι</sub>        | Maximum lead temperature for soldering<br>purpose | 30     | 00       | °C   |



| Symbol          | Parameter                                                                       | Value | Unit |
|-----------------|---------------------------------------------------------------------------------|-------|------|
| I <sub>AR</sub> | Avalanche current, repetitive or not-repetitive (pulse width limited by Tj Max) | 4.3   | A    |
| E <sub>AS</sub> | Single pulse avalanche energy<br>(starting Tj=25°C, Id=Iar, Vdd=50V)            | 190   | mJ   |

Table 3. Avalanche characteristics

#### Table 4. Gate-source zener diode

| Symbol            | Parameter                     | Test conditions        | Min. | Тур. | Max. | Unit |
|-------------------|-------------------------------|------------------------|------|------|------|------|
| BV <sub>GSO</sub> | Gate-source breakdown voltage | Igs=± 1mA (Open Drain) | 30   |      |      | V    |

### **1.1 Protection features of gate-to-source zener diodes**

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.



## 2 Electrical characteristics

(T<sub>CASE</sub>=25°C unless otherwise specified)

| Symbol               | Parameter                                                | Test conditions                                                         | Min. | Тур. | Max.    | Unit     |
|----------------------|----------------------------------------------------------|-------------------------------------------------------------------------|------|------|---------|----------|
| V <sub>(BR)DSS</sub> | Drain-source breakdown<br>voltage                        | $I_D = 1mA$ , $V_{GS} = 0$                                              | 800  |      |         | V        |
| I <sub>DSS</sub>     | Zero gate voltage drain<br>current (V <sub>GS</sub> = 0) | $V_{DS} = Max rating,$<br>$V_{DS} = Max rating,$<br>$Tc = 125^{\circ}C$ |      |      | 1<br>50 | μΑ<br>μΑ |
| I <sub>GSS</sub>     | Gate body leakage current $(V_{GS} = 0)$                 | $V_{GS} = \pm 20V$                                                      |      |      | ±10     | μA       |
| V <sub>GS(th)</sub>  | Gate threshold voltage                                   | $V_{DS} = V_{GS}, I_D = 100 \mu A$                                      | 3    | 3.75 | 4.5     | V        |
| R <sub>DS(on)</sub>  | Static drain-source on resistance                        | V <sub>GS</sub> = 10V, I <sub>D</sub> = 2.15 A                          |      | 1.9  | 2.4     | Ω        |

#### Table 5. On/off states

#### Table 6. Dynamic

| Symbol                                                                        | Parameter                                                                  | Test conditions                                                                                                            | Min. | Тур.                 | Max. | Unit                 |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------|----------------------|------|----------------------|
| g <sub>fs</sub> <sup>(1)</sup>                                                | Forward transconductance                                                   | V <sub>DS</sub> =15V, I <sub>D</sub> = 2.15A                                                                               |      | 4.25                 |      | S                    |
| C <sub>iss</sub><br>C <sub>oss</sub><br>C <sub>rss</sub>                      | Input capacitance<br>Output capacitance<br>Reverse transfer<br>capacitance | V <sub>DS</sub> =25V, f=1 MHz, V <sub>GS</sub> =0                                                                          |      | 910<br>98<br>20      |      | pF<br>pF<br>pF       |
| C <sub>osseq</sub> <sup>(2)</sup>                                             | Equivalent output capacitance                                              | $V_{GS}$ =0, $V_{DS}$ =0V to 400V                                                                                          |      | 40                   |      | pF                   |
| t <sub>d(on)</sub><br>t <sub>r</sub><br>t <sub>d(off)</sub><br>t <sub>r</sub> | Turn-on delay time<br>Rise time<br>Turn-on delay time<br>fall time         | $V_{DD}$ =400 V, $I_D$ = 2 A,<br>$R_G$ =4.7 $\Omega$ , $V_{GS}$ =10V<br>(see <i>Figure 18</i> )                            |      | 18<br>25<br>45<br>30 |      | ns<br>ns<br>ns<br>ns |
| Q <sub>g</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub>                          | Total gate charge<br>Gate-source charge<br>Gate-drain charge               | V <sub>DD</sub> =640V, I <sub>D</sub> = 4.3A<br>V <sub>GS</sub> =10V                                                       |      | 32.4<br>5<br>18.5    | 45.5 | nC<br>nC<br>nC       |
| t <sub>d(Voff)</sub><br>t <sub>r</sub>                                        | Off-voltage rise time<br>Fall time<br>Cross-over time                      | $V_{DD}$ =640 V, I <sub>D</sub> = 4.3 A,<br>R <sub>G</sub> =4.7 $\Omega$ , V <sub>GS</sub> =10V<br>(see <i>Figure 20</i> ) |      | 22<br>10<br>32       |      | ns<br>ns<br>ns       |

1. Pulsed: pulse duration=300µs, duty cycle 1.5%

2.  $C_{oss\ eq}$  is defined as a constant equivalent capacitance giving the same charging time as  $C_{oss}$  when  $V_{DS}$  increases from 0 to 80%  $V_{DSS}$ 



| Symbol                                                 | Parameter                                                                    | Test conditions                                                                                              | Min | Тур.           | Max  | Unit          |
|--------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----|----------------|------|---------------|
| I <sub>SD</sub>                                        | Source-drain current                                                         |                                                                                                              |     |                | 4.3  | А             |
| $I_{SDM}^{(1)}$                                        | Source-drain current (pulsed)                                                |                                                                                                              |     |                | 17.2 | А             |
| V <sub>SD</sub> <sup>(2)</sup>                         | Forward on voltage                                                           | I <sub>SD</sub> = 4.3 A, V <sub>GS</sub> =0                                                                  |     |                | 1.6  | V             |
| t <sub>rr</sub><br>Q <sub>rr</sub><br>I <sub>RRM</sub> | Reverse recovery time<br>Reverse recovery charge<br>Reverse recovery current | I <sub>SD</sub> = 4.3 A,<br>di/dt = 100A/μs,<br>V <sub>DD</sub> =40 V, Tj = 150°C<br>(see <i>Figure 20</i> ) |     | 500<br>3<br>12 |      | ns<br>μC<br>Α |

Table 7.Source drain diode

1. Pulse width limited by safe operating area

2. Pulsed: pulse duration=300µs, duty cycle 1.5%



### 2.1 Electrical characteristics (curves)

Figure 1. Safe operating area for TO-220

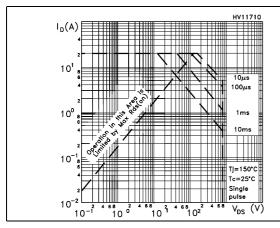
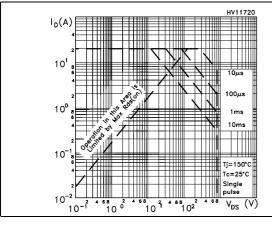
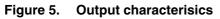
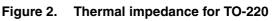






Figure 3. Safe operating area for TO-220FP (HV11720)





5



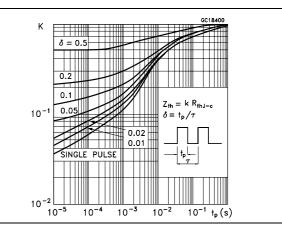



Figure 4. Thermal impedance for TO-220FP

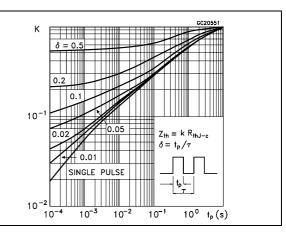
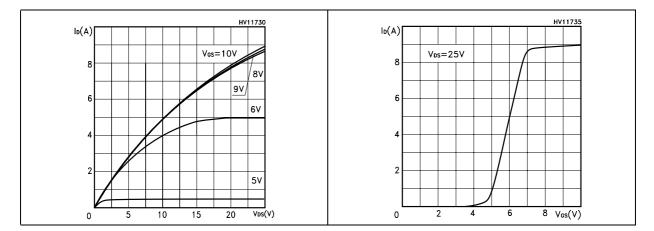
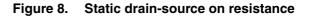





Figure 6. Transfer characteristics



#### Figure 7. Transconductance



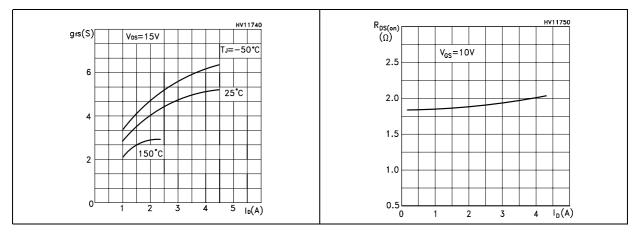
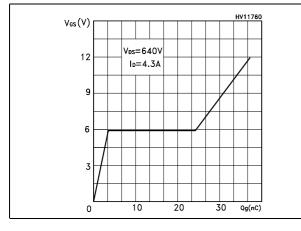




Figure 9. Gate charge vs gate-source voltage Figure 10. Capacitance variations



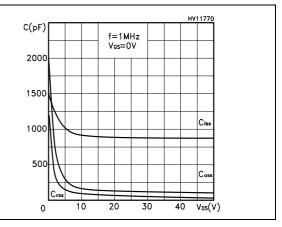
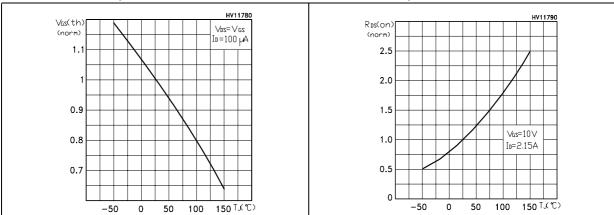




Figure 11. Normalized gate threshold voltage vs temperature

Figure 12. Normalized on resistance vs temperature





# Figure 13. Source-drain diode forward characteristics

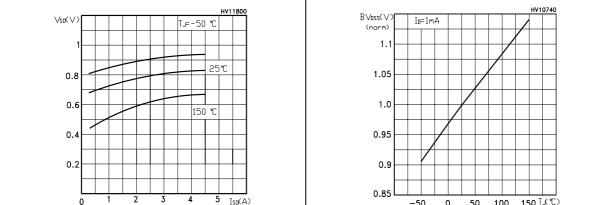
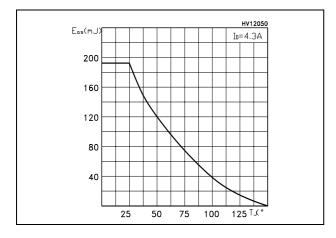
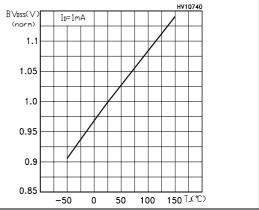





Figure 15. Avalanche energy vs temperature

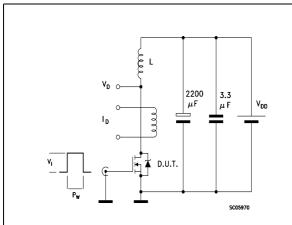
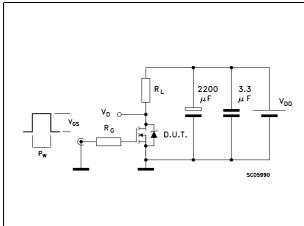
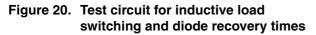
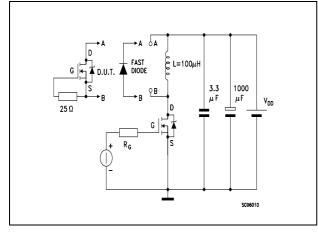


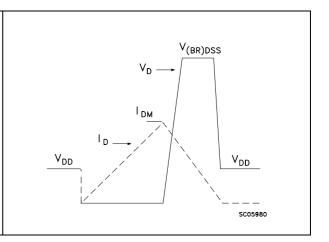
### Figure 14. Normalized BVdss vs temperature



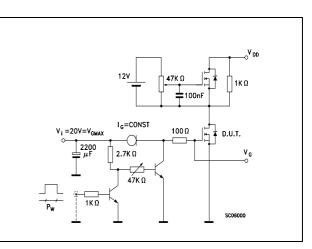
## 3 Test circuit

Figure 16. Unclamped Inductive load test circuit



Figure 18. Switching times test circuit for resistive load








### Figure 17. Unclamped Inductive waveform

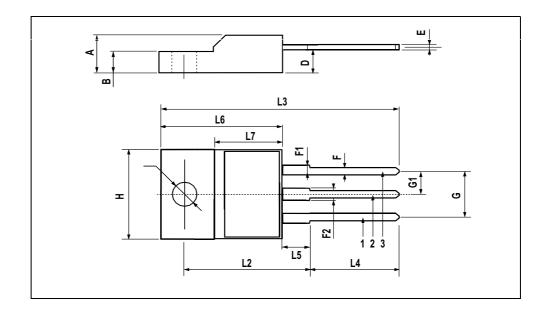




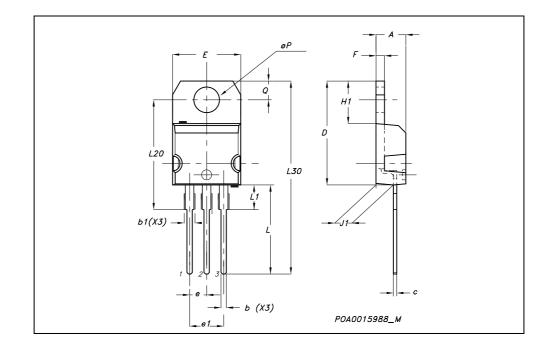




## 4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com




57

| DIM. |      | mm. |      |       | inch  |       |  |
|------|------|-----|------|-------|-------|-------|--|
| DIM. | MIN. | ТҮР | MAX. | MIN.  | TYP.  |       |  |
| А    | 4.4  |     | 4.6  | 0.173 |       | 0.181 |  |
| В    | 2.5  |     | 2.7  | 0.098 |       | 0.106 |  |
| D    | 2.5  |     | 2.75 | 0.098 |       | 0.108 |  |
| Е    | 0.45 |     | 0.7  | 0.017 |       | 0.027 |  |
| F    | 0.75 |     | 1    | 0.030 |       | 0.039 |  |
| F1   | 1.15 |     | 1.7  | 0.045 |       | 0.067 |  |
| F2   | 1.15 |     | 1.7  | 0.045 |       | 0.067 |  |
| G    | 4.95 |     | 5.2  | 0.195 |       | 0.204 |  |
| G1   | 2.4  |     | 2.7  | 0.094 |       | 0.106 |  |
| Н    | 10   |     | 10.4 | 0.393 |       | 0.409 |  |
| L2   |      | 16  |      |       | 0.630 |       |  |
| L3   | 28.6 |     | 30.6 | 1.126 |       | 1.204 |  |
| L4   | 9.8  |     | 10.6 | .0385 |       | 0.417 |  |
| L5   | 2.9  |     | 3.6  | 0.114 |       | 0.141 |  |
| L6   | 15.9 |     | 16.4 | 0.626 |       | 0.645 |  |
| L7   | 9    |     | 9.3  | 0.354 |       | 0.366 |  |
| Ø    | 3    |     | 3.2  | 0.118 |       | 0.126 |  |





| TO-220 MECHANICAL DATA |       |       |       |       |       |       |  |
|------------------------|-------|-------|-------|-------|-------|-------|--|
| DIM.                   | mm.   |       |       | inch  |       |       |  |
|                        | MIN.  | TYP   | MAX.  | MIN.  | TYP.  | MAX.  |  |
| Α                      | 4.40  |       | 4.60  | 0.173 |       | 0.181 |  |
| b                      | 0.61  |       | 0.88  | 0.024 |       | 0.034 |  |
| b1                     | 1.15  |       | 1.70  | 0.045 |       | 0.066 |  |
| С                      | 0.49  |       | 0.70  | 0.019 |       | 0.027 |  |
| D                      | 15.25 |       | 15.75 | 0.60  |       | 0.620 |  |
| E                      | 10    |       | 10.40 | 0.393 |       | 0.409 |  |
| е                      | 2.40  |       | 2.70  | 0.094 |       | 0.106 |  |
| e1                     | 4.95  |       | 5.15  | 0.194 |       | 0.202 |  |
| F                      | 1.23  |       | 1.32  | 0.048 |       | 0.052 |  |
| H1                     | 6.20  |       | 6.60  | 0.244 |       | 0.256 |  |
| J1                     | 2.40  |       | 2.72  | 0.094 |       | 0.107 |  |
| L                      | 13    |       | 14    | 0.511 |       | 0.551 |  |
| L1                     | 3.50  |       | 3.93  | 0.137 |       | 0.154 |  |
| L20                    |       | 16.40 |       |       | 0.645 |       |  |
| L30                    |       | 28.90 |       |       | 1.137 |       |  |
| øP                     | 3.75  |       | 3.85  | 0.147 |       | 0.151 |  |
| Q                      | 2.65  |       | 2.95  | 0.104 |       | 0.116 |  |



# 5 Revision history

Table 8. Revision history

| Date        | Revision | Changes                         |
|-------------|----------|---------------------------------|
| 09-Sep-2004 | 2        | Preliminary version             |
| 06-Sep-2005 | 3        | Final version                   |
| 16-Aug-2006 | 4        | New template, no content change |



#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com



## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60\_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B