STPIC6D595

Power logic 8-bit shift register

Features

- Low $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}: 4 \Omega$ typ
- Eight 100 mA DMOS outputs
- 250 mA current limit capability
- Devices are cascadable
- Low power consumption
- Footprint compatible with STPIC6C595

Description

This STPIC6D595 is a monolithic, mediumvoltage, low current power 8-bit shift register designed for use in systems that require relatively moderate load power such as LEDs.

The device contains an 8 -bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Data transfers through both the shift and storage register clock (SRCK) and the register clock ($\overline{\mathrm{RCK}}$), respectively. The device transfers data out the serial output (SER OUT) port on the rising edge of SRCK. The storage register transfers data to the output buffer when shift register clear (CLR) is high. When $\overline{C L R}$ is low, the input shift register is cleared. When output enable $(\overline{\mathrm{G}})$ is held high, all data in the output buffer is held low and all drain output are off. When G is held low, data from the storage register is transparent to the output buffer.

When data in the output buffers is low, the DMOS transistor outputs are off. When data is high, the DMOS transistor outputs have sink-current capability. The SER OUT allows for cascading of the data from the shift register to additional devices.
Output are low-side, open-drain DMOS transistors with output ratings of 20 V and 120 mA continuous sink-current capability. Each output provides a 250 mA maximum current limit at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$. The current limit decreases as the junction temperature increases for additional device protection. The device also provides up to 2.0 kV of ESD protection when tested using the human-body model.

The STPIC6D595 is characterized for operation over the operating case temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Table 1. Device summary

Order codes	Package	Packaging
STPIC6D595MTR	SO-16 (Tape and reel)	2500 parts per reel
STPIC6D595TTR	TSSOP16 (Tape and reel)	2500 parts per reel
STPIC6D595B1R	DIP-16	25 parts per tube

Contents

1 Logic symbol and pin configuration 3
2 Maximum rating 4
2.1 Absolute maximum ratings 4
2.2 Thermal data 4
2.3 Recommended operating conditions 5
3 Electrical characteristics 6
3.1 DC characteristics 6
3.2 Switching characteristics 7
4 Logic diagram 8
5 Typical operating circuit 9
6 Typical performance and characteristics 13
7 Package mechanical data 14
8 Revision history 20

1
 Logic symbol and pin configuration

Figure 1. Pin configuration

Figure 2. Logic symbol

2 Maximum rating

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Logic supply voltage (See Note 1)	7	V
$\mathrm{~V}_{\mathrm{I}}$	Logic input voltage range	-0.3 to 7	V
$\mathrm{~V}_{\mathrm{DS}}$	Power DMOS drain to source voltage (See Note 2)	20	V
I_{D}	Pulsed drain current, each output, all output ON $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	250	mA
I_{D}	Continuous current, each output, all output ON $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	100	mA
I_{D}	Peak drain current single output $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)($ See Note 3)	250	mA
P_{d}	Continuous total dissipation ($\left.\mathrm{T}_{\mathrm{C}} \leq 25^{\circ} \mathrm{C}\right)$	1087	mW
P_{d}	Continuous total dissipation ($\left.\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$	217	mW
$\mathrm{~T}_{\mathrm{J}}$	Operating virtual junction temperature range	-40 to +150	${ }^{\circ} \mathrm{C}$
T_{C}	Operating case temperature range	-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260	${ }^{\circ} \mathrm{C}$

2.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Package	Values	Unit
$\mathrm{R}_{\text {th(JA) }}$	Thermal resistance junction-ambient	DIP-16	85	
		SO-16	107	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		TSSOP16	143	

2.3 Recommended operating conditions

Table 4. Recommended operating conditions

Symbol	Parameter	Min	Max	Unit
V_{CC}	Logic supply voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High level input voltage	$0.85 \mathrm{~V}_{\mathrm{CC}}$	V_{CC}	V
V_{IL}	Low level input voltage	0	$0.15 \mathrm{~V}_{\mathrm{CC}}$	V
I_{DP}	Pulse drain output current $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right.$, all outputs ON) (see Note 3, Note 4)	250	mA	
t_{su}	Set-up time, SER IN high before SRCK \uparrow (see Figure 4 and Figure 8)	10	ns	
t_{h}	Hold time, SER IN high after SRCK \uparrow (see Figure 4, Figure 7, Figure 8)	10	ns	
t_{W}	Pulse duration (see Figure 8)	40	ns	
$\mathrm{~T}_{\mathrm{C}}$	Operating case temperature	-40	125	${ }^{\circ} \mathrm{C}$

3 Electrical characteristics

3.1 DC characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Table 5. DC characteristics

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {(BR) }{ }^{\text {dSx }}}$	Drain-to-source breakdown voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$			20	V
$V_{S D}$	Source-to-drain diode forward voltage	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$		0.85	1.2	V
V_{OH}	High level output voltage SER OUT	$\mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A} \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	4.4	4.49		V
		$\mathrm{l}_{\mathrm{OH}}=-4 \mathrm{~mA} \mathrm{~V} \mathrm{CC}=4.5 \mathrm{~V}$	4			V
V_{OL}	Low level output voltage SER OUT	$\mathrm{l}_{\mathrm{OH}}=20 \mu \mathrm{~A} \mathrm{~V} \mathrm{CC}=4.5 \mathrm{~V}$		1	100	mV
		$\mathrm{l}_{\mathrm{OH}}=4 \mathrm{mAV} \mathrm{CC}=4.5 \mathrm{~V}$		145	300	mV
$\mathrm{IIH}^{\text {H }}$	High level input current	$\mathrm{V}_{C C}=5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$		1	100	nA
IIL	Low level input current	$\mathrm{V}_{C C}=5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{I}}=0$		-1	-100	nA
$I_{C C}$	Logic supply current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ All outputs OFF or ON		23	40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CC(FRQ) }}$	Logic supply current at frequency	$\mathrm{f}_{\mathrm{SRCK}}=5 \mathrm{MHz} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ All outputs OFF (See Figure 6, ${ }^{(1)}$)		70	250	$\mu \mathrm{A}$
I_{N}	Nominal current	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}(\text { on })}=0.5 \mathrm{VI}_{\mathrm{N}}=\mathrm{I}_{\mathrm{D}} \\ & \mathrm{~T}_{\mathrm{C}}=85^{\circ} \mathrm{C} \\ & \text { (See Note 4, Note 5, Note 6) } \\ & \text { (1) } \end{aligned}$		120	200	mA
$\mathrm{I}_{\text {DSX }}$	Off-state drain current	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ or 0 V		0.02	1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text { or } 0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$		0.5	1	$\mu \mathrm{A}$
$\mathrm{R}_{\text {DS(on) }}$	Static drain source on state resistance (See Note 4, and Note 5)	$\mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA} \mathrm{~V} \mathrm{CC}=4.5 \mathrm{~V}$		3.4	4	Ω
		$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA} \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$		4.8	6	Ω
		$\mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA} \mathrm{~V} \mathrm{~V}=4.5 \mathrm{~V}$		3.5	6	Ω

1. Not tested, specified by design

3.2 Switching characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Table 6. Switching characteristics

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\text {PHL }}$	Propagation delay time, high to low level output from \bar{G}	$C_{L}=30 \mathrm{pF} \mathrm{I}_{\mathrm{D}}=75 \mathrm{~mA}$ (See Figure 4, Figure 5, Figure 6, Figure 7,)	-	19	30	ns
$t_{\text {PLH }}$	Propagation delay time, low to high level output from \bar{G}		-	46	70	ns
$\mathrm{t}_{\text {PHL-SDO }}$	Propagation delay time, clock to SDO		-	19	25	ns
$\mathrm{t}_{\text {PLH-SDO }}$	Propagation delay time, clock to SDO		-	46	60	ns
$\mathrm{t}_{\text {PLH-R_O }}$	Propagation delay low to high level RCK to OUT		-	62	90	ns
tPHL-R_O	Propagation delay high to low level RCK to OUT		-	13	18	ns
$t_{\text {PLH-S_SO }}$	Propagation delay low to high level SCK to SDO		-	14	20	ns
$t_{\text {PHL-S_SO }}$	Propagation delay high to low level SCK to SDO		-	14	20	ns
t_{r}	Rise time, drain output		-	20	30	ns
t_{f}	Fall time, drain output		-	15	20	ns

Note: 1 All voltage value are with respect to GND
2 Each power DMOS source is internally connected to GND
3 Pulse duration $\leq 100 \mu$ s and duty cycle $\leq 2 \%$
4 Technique should limit $T_{J}-T_{C}$ to $10^{\circ} \mathrm{C}$ maximum
5 These parameters are measured with voltage sensing contacts separate from the currentcarrying contacts.

6 Nominal Current is defined for a consistent comparison between devices from different sources. It is the current that produces a voltage drop of 0.5 V at $T_{C}=85^{\circ} \mathrm{C}$.

4 Logic diagram

Figure 3. Logic diagram

5 Typical operating circuit

Figure 4. Typical operation mode test circuits

Figure 5. Typical operation mode waveforms

Note: 1 A) The word generator has the following characteristics: $t_{r} \leq 10 \mathrm{~ns}, t_{f} \leq 10 \mathrm{~ns}, t_{W}=300 \mathrm{~ns}$, pulse repetition rate $(P R R)=5 \mathrm{kHz}, Z_{O}=50 \Omega$
2 B) C_{L} includes probe and jig capacitance.

Figure 6. Typical operation mode test circuits

Figure 7. Switching time waveform

Figure 8. Input setup and hold waveform

Note: 1 A) The word generator has the following characteristics: $t_{r} \leq 10 \mathrm{~ns}, t_{f} \leq 10 \mathrm{~ns}, t_{W}=300 \mathrm{~ns}$, pulse repetition rate $(P R R)=5 \mathrm{kHz}, Z_{O}=50 \Omega$
$2 B) C_{L}$ includes probe and jig capacitance.

Figure 9. Input equivalent circuit

Figure 10. Output equivalent circuit

6 Typical performance and characteristics

Unless otherwise specified $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Figure 11. Static drain-source on-state resistance vs logic supply voltage

Figure 12. Supply current vs frequency

Figure 13. Supply current vs supply voltage

Figure 14. Switching time vs case temperature

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D						0.100
E		17.78			0.700	0.787
e						
e3						
F						
I			5.1			0.130
L			1.27			0.201

P001C

SO-16 MECHANICAL DATA						
DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.25	0.004		0.010
a2			1.64			0.063
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1	45° (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S	$8^{\circ} \text { (max.) }$					

Tape \& Reel SO-16 MECHANICAL DATA

DIM.	mm.				inch	
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60		22.4		0.882	
T			6.65	0.254		0.262
Ao	6.45		10.5	0.406		0.414
Bo	10.3		2.3	0.082		0.090
Ko	2.1		4.1	0.153		0.161
Po	3.9		8.1	0.311		0.319
P	7.9					

TSSOP16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09	4.9	5	0.20	0.004	
D	6.2	6.4	6.1	0.193	0.197	0.201
E	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC		0.244	0.252	0.079
K	0					0.0256 BSC
L	0.45	0.60	0.75	0.018	0.024	0.030

Tape \& Reel TSSOP16 MECHANICAL DATA

DIM.	mm.				Mnch	
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60		22.4			0.882
T			6.9	0.264		0.272
Ao	6.7		5.5	0.209		0.071
Bo	5.3		1.8	0.063		0.161
Ko	1.6		4.1	0.153		0.319
Po	3.9		8.1	0.311		
P	7.9					

8 Revision history

Table 7. Document revision history

Date	Revision	Changes
20-Jun-2007	1	First release
06-Sep-2007	2	Change from Preliminary to final version
17-Nov-2009	3	Updated: Table 2, Table 3, Table 5, Table 6, Table 6, Figure 1, Figure 7, Figure 8 and Figure 9 Added: Figure 2, Figure 11, Figure 12, Figure 13 and Figure 14

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter Shift Registers category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
5962-8956101EA 74HC195N NLV74HC165ADTR2G 5962-9172201M2A MC74HC597ADG MC100EP142MNG MC100EP016AMNG 5962-9172201MFA MC74HC164BDR2G TC74HC165AP(F) 74AHC164T14-13 MC74LV594ADR2G NLV14094BDTR2G NLV74HC595ADTG MC74HC165AMNTWG TPIC6C595PWG4 74VHC164MTCX CD74HC195M96 CD4073BM96 CD4053BM96 MM74HC595MTCX 74HCT164T14-13 74HCT164S14-13 NLV14014BFELG NLV74HC165ADR2G NLV74HC589ADTR2G NPIC6C595D-Q100,11 NPIC6C595PW,118 NPIC6C596ADJ NPIC6C596D-Q100, 11 BU4094BCF-E2 BU4094BCFV-E2 74HC164D14 74HC164T14-13 TPIC6C596PWRG4 STPIC6D595MTR STP08CP05MTR CD74HC123E 74HC164D.653 74HC165D.653 74HC595D.118 74HCT165D.652 74HC164D.652 74HC597D.652 74HCT164D.652 74HCT164D.653 74HCT595D.112 74AHC595D.112 74HC4094D.652 HEF4015BT. 652

