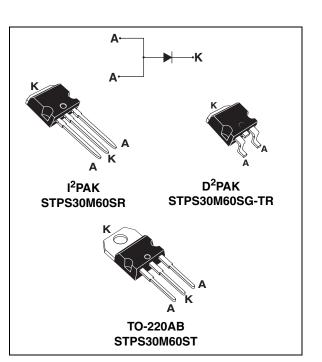


STPS30M60S

Power Schottky rectifier

Features

- High current capability
- Avalanche rated
- Low forward voltage drop
- High frequency operation


Description

The STPS30M60S is a single Schottky diode, suited for high frequency switch mode power supply.

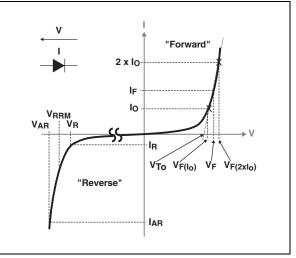

Packaged in TO-220AB, I²PAK and D²PAK, this device is intended to be used in notebook, game station and desktop adapters, providing in these applications a good efficiency at both low and high load.

Table 1.	Device summa	ry
_		

Symbol	Value
I _{F(AV)}	30 A
V _{RRM}	60 V
V _F (typ)	0.380 V
T _j (max)	150 °C

 V_{ARM} and I_{ARM} must respect the reverse safe operating area defined in *Figure 12*. V_{AR} and I_{AR} are pulse measurements (t_p < 1 μs). V_R, I_R, V_{RRM} and V_F, are static characteristics

Doc ID 022049 Rev 1

1/9

Characteristics 1

Absolute ratings (limiting values with terminals 1 and 3 short circuited at Table 2. 25 °C, unless otherwise specified)

Symbol		Value	Unit			
V _{RRM}	Repetitive peak reverse ve	oltage			60	V
I _{F(RMS)}	Forward rms current				90	А
I _{F(AV)}	Average forward current, a	δ = 0.5	T _c = 130 °C	Per package	30	А
I _{FSM}	Surge non repetitive forwa	t _p = 10 ms si	ne-wave	600	А	
P _{ARM} ⁽¹⁾	Repetitive peak avalanche	T _j = 25 °C, t _p = 1 μs		34400	W	
V _{ARM} ⁽²⁾	Maximum repetitive peak avalanche voltage	t _p < 1 μs, T _j <	150 °C, I _{AR} <	129 A	80	V
V _{ASM} ⁽²⁾	Maximum single-pulse peak avalanche voltage	t _p < 1 μs, T _j <	80	V		
T _{stg}	Storage temperature rang	e temperature range				
Тj	Maximum operating juncti	on temperature	e ⁽³⁾		150	°C

1. For temperature or pulse time duration deratings, please refer to Figure 4 and 5. More details regarding the avalanche energy measurements and diode validation in the avalanche are provided in the application notes AN1768 and AN2025.

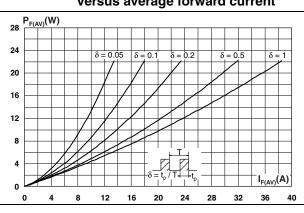
2. See Figure 12

 $\frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$ condition to avoid thermal runaway for a diode on its own heatsink 3.

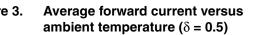
Table 3. Thermal resistance

Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction to case	0.9	°C/W

Table 4. Static electrical characteristics (terminals 1 and 3 short circuited)


Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _B ⁽¹⁾	Reverse leakage	T _j = 25 °C	VV	-	35	165	μΑ
'R'	current	T _j = 125 °C	$V_{\rm R} = V_{\rm RM}$	-	25	100	mA
	V _F ⁽²⁾ Forward voltage drop	$T_j = 25 \text{ °C}$ $I_F = 15 \text{ A}$	-	0.475	0.515		
V (2)		T _j = 125 °C	_i = 125 °C _i = 25 °C i = − 30 A	-	0.380	0.425	v
VF.		T _j = 25 °C		-	0.540	0.590	v
		T _j = 125 °C		-	0.470	0.535	

1. Pulse test: $t_p = 5 \text{ ms}, \delta < 2\%$


2. Pulse test: $t_p = 380 \ \mu s, \ \delta < 2\%$

To evaluate the conduction losses use the following equation: P = 0.395 x $I_{F(AV)}$ + 0.0047 x ${I_F}^2_{(RMS)}$

Figure 2. Average forward power dissipation Figure 3. versus average forward current

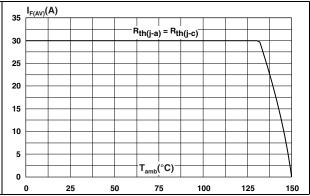


Figure 4. Normalized avalanche power derating versus pulse duration

Figure 5. Normalized avalanche power derating versus junction temperature

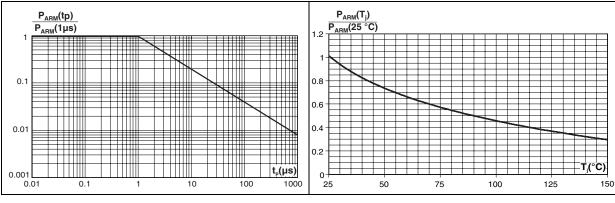
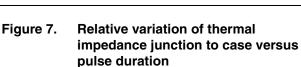
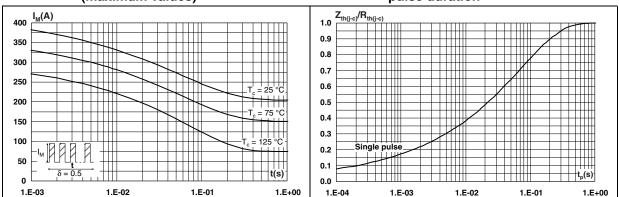
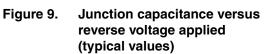
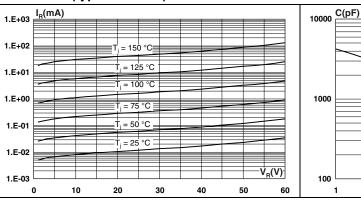




Figure 6. Non repetitive surge peak forward current versus overload duration (maximum values)

57


F = 1 MHz


 $V_{osc} = 30 \text{ mV}_{RI}$ $T_j = 25 ^{\circ}\text{C}$

V_R(V)

100

Figure 8. Reverse leakage current versus reverse voltage applied (typical values)

Figure 10. Forward voltage drop versus forward current

Figure 11. Thermal resistance junction to ambient versus copper surface under tab

10

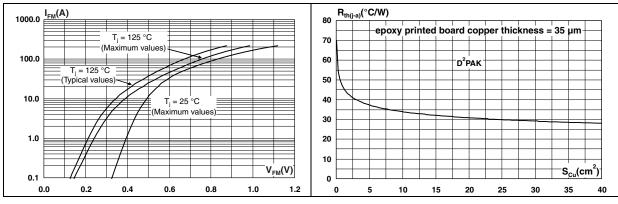
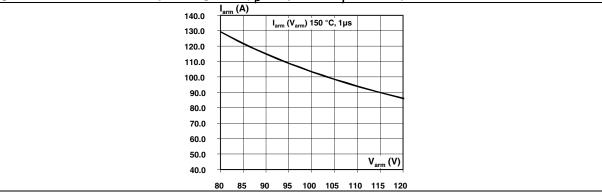



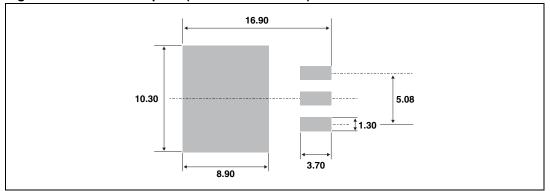
Figure 12. Reverse safe operating area ($t_p < 1 \ \mu s$ and $T_j < 150 \ ^\circ C$)

2 Package information

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

Table 5. TO-220AB dimensions


				Dimer	nsions	
		Ref.	Millim	neters	Inc	hes
			Min.	Max.	Min.	Max.
		А	4.40	4.60	0.173	0.181
		С	1.23	1.32	0.048	0.051
H2 Dia	A	D	2.40	2.72	0.094	0.107
		E	0.49	0.70	0.019	0.027
	L7	F	0.61	0.88	0.024	0.034
L6		F1	1.14	1.70	0.044	0.066
		F2	1.14	1.70	0.044	0.066
F2		G	4.95	5.15	0.194	0.202
	D	G1	2.40	2.70	0.094	0.106
L4		H2	10	10.40	0.393	0.409
F→←		L2	16.4	Тур.	0.645	5 Тур.
G1	M =	L4	13	14	0.511	0.551
	⊫ E →	L5	2.65	2.95	0.104	0.116
G		L6	15.25	15.75	0.600	0.620
		L7	6.20	6.60	0.244	0.259
		L9	3.50	3.93	0.137	0.154
		М	2.6	Тур.	0.102	2 Тур.
		Dia.	3.75	3.85	0.147	0.151

				Dimer	sions	
		Ref.	Millin	neters	Inc	hes
			Min.	Max.	Min.	Max.
		А	4.40	4.60	0.173	0.181
		A1	2.49	2.69	0.098	0.106
	C2→←	A2	0.03	0.23	0.001	0.009
		В	0.70	0.93	0.027	0.037
с		B2	1.14	1.70	0.045	0.067
		С	0.45	0.60	0.017	0.024
		C2	1.23	1.36	0.048	0.054
$ \xrightarrow{B2} B $		D	8.95	9.35	0.352	0.368
G		Е	10.00	10.40	0.393	0.409
		G	4.88	5.28	0.192	0.208
		L	15.00	15.85	0.590	0.624
	M↓ ★↓ V2	L2	1.27	1.40	0.050	0.055
	* FLAT ZONE NO LESS THAN 2mm	L3	1.40	1.75	0.055	0.069
	FLAT ZONE NO LESS I HAN ZIIIII	М	2.40	3.20	0.094	0.126
		R	0.40	typ.	0.010	6 typ.
		V2	0°	8 °	0°	8°

Table 6.D²PAK dimensions

Figure 13. D²PAK footprint (dimensions in mm)

				nsions		
		Ref.	Millin	neters	Inc	hes
i			Min.	Max.	Min.	Max.
, É ,		Α	4.40	4.60	0.173	0.181
		A1	2.40	2.72	0.094	0.107
	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	b	0.61	0.88	0.024	0.035
		b1	1.14	1.70	0.044	0.067
		с	0.49	0.70	0.019	0.028
		c2	1.23	1.32	0.048	0.052
		D	8.95	9.35	0.352	0.368
		е	2.40	2.70	0.094	0.106
		e1	4.95	5.15	0.195	0.203
		E	10	10.40	0.394	0.409
l≪ e1 →		L	13	14	0.512	0.551
		L1	3.50	3.93	0.138	0.155
		L2	1.27	1.40	0.050	0.055

Table 7.I²PAK dimensions

3 Ordering information

Table 8.Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STPS30M60ST	STPS30M60ST	TO-220AB	2.2 g	50	Tube
STPS30M60SR	STPS30M60SR	I ² PAK	1.49 g	50	Tube
STPS30M60SG-TR	STPS30M60SG	D ² PAK	1.48 g	1000	Tape and reel

4 Revision history

Date	Revision	Changes
14-Oct-2011	1	First issue.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 022049 Rev 1

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Schottky Diodes & Rectifiers category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

MA4E2039 D1FH3-5063 MBR10100CT-BP MBR1545CT MMBD301M3T5G RB160M-50TR RB551V-30 BAS16E6433HTMA1 BAT 54-02LRH E6327 NSR05F40QNXT5G NTE555 JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W SK310-T SK32A-LTP SK33A-TP SK34B-TP SS3003CH-TL-E GA01SHT18 CRS10I30A(TE85L,QM MA4E2501L-1290 MBRB30H30CT-1G SB007-03C-TB-E SK32A-TP SK33B-TP SK35A-TP SK38B-TP NRVBM120LT1G NTE505 NTSB30U100CT-1G SS15E-TP VS-6CWQ10FNHM3 ACDBA1100LR-HF ACDBA1200-HF ACDBA140-HF ACDBA2100-HF ACDBA3100-HF CDBQC0530L-HF CDBQC0240LR-HF ACDBA340-HF ACDBA260LR-HF ACDBA1100-HF SK310B-TP MA4E2502L-1246 MA4E2502H-1246 NRVBM120ET1G NSR01L30MXT5G NTE573 NTE6081