
life.augmented

STPSC12C065-Y

Automotive 650 V power Schottky silicon carbide diode

Datasheet - production data

Features

- No or negligible reverse recovery
- Switching behavior independent of temperature
- Dedicated to PFC applications
- High forward surge capability
- AEC-Q101 qualified
- PPAP capable
- ECOPACK®2 compliant component

Description

The SiC diode is an ultrahigh performance power Schottky diode. It is manufactured using a silicon carbide substrate. The wide band gap material allows the design of a Schottky diode structure with a 650 V rating. Due to the Schottky construction, no recovery is shown at turn-off and ringing patterns are negligible. The minimal capacitive turn-off behavior is independent of temperature and is ideal for automotive applications.

Especially suited for use as boost diode, this rectifier will enhance the performance in hard switching conditions. Its high forward surge capability ensures a good robustness during transient phases.

Table 1. Device summary

	<u> </u>
Symbol	Value
I _{F(AV)}	12 A
V _{RRM}	650 V
T _j (max)	175 °C

Characteristics STPSC12C065-Y

Characteristics 1

Table 2. Absolute ratings (limiting values at 25 °C unless otherwise specified)

Symbol	Par	Value	Unit	
V_{RRM}	Repetitive peak reverse voltage,	T _j = -40 °C	650	V
I _{F(RMS)}	Forward rms current		22	Α
I _{F(AV)}	Average forward current	$T_{c} = 120 {}^{\circ}C^{(1)}, \delta = 0.5$	12	Α
I _{FSM}	Surge non repetitive forward current	t_p = 10 ms sinusoidal, T_c = 25 °C t_p = 10 ms sinusoidal, T_c = 125 °C t_p = 10 μ s square, T_c = 25 °C	92 84 470	A
I _{FRM}	Repetitive peak forward current	$T_c = 120 {}^{\circ}C^{(1)}, T_j = 175 {}^{\circ}C, \delta = 0.1$	51	Α
T _{stg}	Storage temperature range		-65 to +175	°C
Tj	Operating junction temperature ⁽²⁾		-40 to +175	°C

Table 3. Thermal resistance

Symbol	Parameter	Va	Unit	
Symbol	raiametei	Тур.	Max.	Offic
R _{th(j-c)}	Junction to case	1.2	1.7	°C/W

Table 4. Static electrical characteristics

Symbol	Parameter	Tests conditions		Min.	Тур.	Max.	Unit
(1)	I _R ⁽¹⁾ Reverse leakage current	T _j = 25 °C	$V_R = V_{RRM}$	-	10	120	μΑ
'R`		T _j = 150 °C		1	100	500	
V_ (2)	V _F ⁽²⁾ Forward voltage drop	T _j = 25 °C	I _F = 12 A	-	1.56	1.75	\
VF		T _j = 150 °C	1F - 12 A	-	1.98	2.5	V

^{1.} $t_p = 10 \text{ ms}, \delta < 2\%$

To evaluate the conduction losses use the following equation:

$$P = 1.35 \times I_{F(AV)} + 0.096 \times I_{F^{2}(RMS)}$$

Table 5. Dynamic electrical characteristics

Symbol	Parameter	Test conditions	Тур.	Unit
Q _{cj} ⁽¹⁾	Total capacitive charge	V _R = 400 V	29.3	nC
C.	C _i Total capacitance	$V_R = 0 \text{ V}, T_c = 25 \text{ °C}, F = 1 \text{ MHz}$	530	pF
oj l		$V_R = 300 \text{ V}, T_C = 25 \text{ °C}, F = 1 \text{ MHz}$	55	PΓ

^{1.} Most accurate value for the capacitive charge: $Q_{cj} = \int_{0}^{V_{OUT}} c_{j}(v_{R}).dv_{R}$

 $[\]begin{array}{ll} \text{1.} & \text{Value based on } R_{th(j-c)} \text{ max.} \\ \text{2.} & \frac{dPtot}{dTj} < \frac{1}{Rth(j-a)} \text{ condition to avoid thermal runaway for a diode on its own heatsink} \\ \end{array}$

^{2.} $t_p = 500 \, \mu s, \, \delta < 2\%$

STPSC12C065-Y Characteristics

Figure 1. Forward voltage drop versus forward current (typical values, low level)

Figure 2. Forward voltage drop versus forward current (typical values, high level)

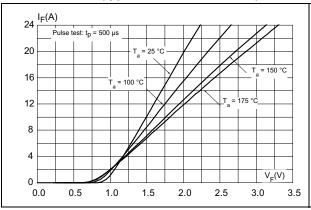
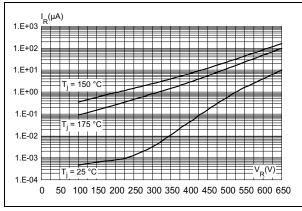



Figure 3. Reverse leakage current versus reverse voltage applied (typical values)

Figure 4. Peak forward current versus case temperature

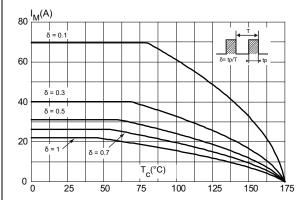
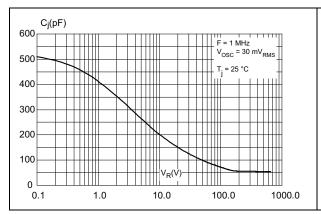
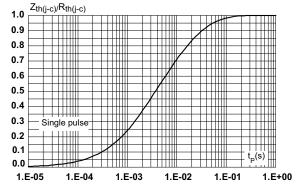
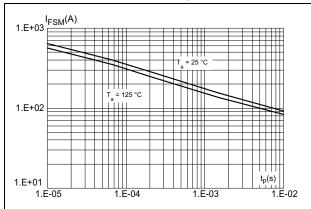
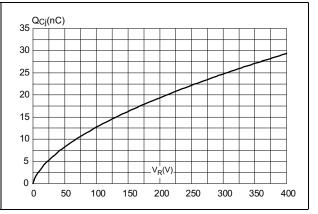




Figure 5. Junction capacitance versus reverse voltage applied (typical values)

Figure 6. Relative variation of thermal impedance junction to case versus pulse duration





Characteristics STPSC12C065-Y

Figure 7. Non-repetitive peak surge forward current versus pulse duration (sinusoidal waveform)

Figure 8. Total capacitive charges versus reverse voltage applied (typical values)

2 Package information

- Epoxy meets UL94, V0
- Recommended torque value (TO-220AC): 0.55 N·m
- Maximum torque value: 0.7 N⋅m for TO-220AC
- Cooling method: conduction (C)

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

 $\begin{array}{c|c}
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
\hline
 & &$

Figure 9. TO-220AC dimension definitions

Package information STPSC12C065-Y

Table 6. TO-220AC dimension values

	Dimensions				
Ref.	Millimeters		Inc	hes	
	Min.	Min. Max.		Max.	
А	4.40	4.60	0.173	0.181	
С	1.23	1.32	0.048	0.051	
D	2.40	2.72	0.094	0.107	
E	0.49	0.70	0.019	0.027	
F	0.61	0.88	0.024 0.034		
F1	1.14	1.70	0.044 0.066		
G	4.95	5.15	0.194 0.202		
H2	10.00	10.40	0.393 0.409		
L2	16.40 typ.		0.645 typ.		
L4	13.00	14.00	0.511 0.551		
L5	2.65	2.95	0.104	0.116	
L6	15.25	15.75	0.600	0.620	
L7	6.20	6.60	0.244 0.259		
L9	3.50	3.93	0.137	0.154	
M	2.6 typ.		0.102 typ.		
Diam. I	3.75	3.85 0.147 0.15		0.151	

3 Ordering information

Table 7. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STPSC12C065DY	PSC12C065DY	TO-220AC	1.86 g	50	Tube

4 Revision history

Table 8. Document revision history

Date	Revision	Changes
13-Jan-2015	1	First issue.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Schottky Diodes & Rectifiers category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

MA4E2039 D1FH3-5063 MBR10100CT-BP MBR1545CT MMBD301M3T5G RB160M-50TR RB551V-30 BAS16E6433HTMA1 BAT 54-02LRH E6327 NSR05F40QNXT5G NTE555 JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W SK310-T SK32A-LTP SK33A-TP SK34B-TP SS3003CH-TL-E GA01SHT18 CRS10I30A(TE85L,QM MA4E2501L-1290 MBRA140TRPBF MBRB30H30CT-1G SB007-03C-TB-E SK32A-TP SK33B-TP SK35A-TP SK38B-TP NRVBM120LT1G NTE505 NTSB30U100CT-1G SS15E-TP VS-6CWQ10FNHM3 ACDBA1100LR-HF ACDBA1200-HF ACDBA140-HF ACDBA2100-HF ACDBA3100-HF CDBQC0530L-HF CDBQC0240LR-HF ACDBA340-HF ACDBA260LR-HF ACDBA1100-HF SK310B-TP MA4E2502L-1246 MA4E2502H-1246 NRVBM120ET1G NSR01L30MXT5G NTE573