STQ2LN60K3-AP

N-channel $600 \mathrm{~V}, 4 \Omega$ typ., 0.6 A MDmesh ${ }^{\text {TM }} \mathrm{K} 3$ Power MOSFET in a TO-92 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	$\mathbf{V}_{\text {DS }}$	$\mathbf{R D S}_{\text {D(on) }}$ $\mathbf{m a x}$	$\mathbf{I D}_{\mathbf{D}}$	$\mathbf{P}_{\text {TOT }}$
STQ2LN60K3-AP	600 V	4.5Ω	0.6 A	2.5 W

- 100% avalanche tested
- Extremely high dv/dt capability
- Very low intrinsic capacitance
- Improved diode reverse recovery characteristics
- Zener-protected

Applications

- Switching applications

Description

This MDmesh ${ }^{\text {TM }}$ K3 Power MOSFET is the result of improvements applied to STMicroelectronics' MDmesh ${ }^{\text {TM }}$ technology, combined with a new optimized vertical structure. This device boasts an extremely low on-resistance, superior dynamic performance and high avalanche capability, rendering it suitable for the most demanding applications.

Table 1: Device summary

Order code	Marking	Package	Packaging
STQ2LN60K3-AP	2LN60K3	TO-92	Ammopack

Contents

1 Electrical ratings 3
2 Electrical characteristics 4
2.1 Electrical characteristics (curves) 6
3 Test circuits 9
4 Package information 10
4.1 TO-92 ammopack package information 10
5 Revision history 12

1

Electrical ratings
Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	600	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate-source voltage	± 30	V
ID_{D}	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	0.6	A
ID_{D}	Drain current (continuous) at $\mathrm{TC}=100^{\circ} \mathrm{C}$	0.38	A
$\mathrm{IDM}^{(1)}$	Drain current (pulsed)	2.4	A
$\mathrm{P}_{\mathrm{TOT}}$	Total dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	2.5	W
${\mathrm{dv} / \mathrm{dtt}^{(2)}}^{\mathrm{C}}$	Peak diode recovery voltage slope	12	$\mathrm{~V} / \mathrm{ns}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-55 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Operating junction temperature range		

Notes:

${ }^{(1)}$ Pulse width limited by safe operating area.
${ }^{(2)}$ IsD $\leq 2 \mathrm{~A}$, di/dt $\leq 400 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DS}(\text { peak })}<\mathrm{V}_{\text {(BR) }}$ DSS

Table 3: Thermal data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\mathrm{th}-\mathrm{j} \text {-ase }}$	Thermal resistance junction-case	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{thj}-\mathrm{amb}}$	Thermal resistance junction-ambient	120	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
$I_{\text {AS }}$	Single pulse avalanche current (pulse width limited by $\left.T_{j m a x}\right)$	2	A
E_{AS}	Single pulse avalanche energy $\left(\right.$ starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, I_{\mathrm{D}}=I_{\mathrm{AR}}, V_{\mathrm{DD}}=50 \mathrm{~V}$)	80	mJ

2 Electrical characteristics

(TCASE $=25^{\circ} \mathrm{C}$ unless otherwise specified)
Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {(BR) }{ }^{\text {dss }}}$	Drain-source breakdown voltage	$\mathrm{ld}=1 \mathrm{~mA}, \mathrm{VGS}=0 \mathrm{~V}$	600			V
Idss	Zero gate voltage drain current	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=600 \mathrm{~V}$			1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{VGS}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=600 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{C}=125^{\circ} \mathrm{C}}{ }^{(1)} \end{aligned}$			50	
IGss	Gate-body leakage current	$\mathrm{V} \mathrm{DS}=0 \mathrm{~V}, \mathrm{VGS}= \pm 20 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{GS}}($ th)	Gate threshold voltage	$V_{\text {DS }}=V_{G S}, I_{\text {d }}=50 \mu \mathrm{~A}$	3	3.75	4.5	V
RDS(on)	Static drain-source onresistance	$\mathrm{VGS}=10 \mathrm{~V}, \mathrm{ld}=1 \mathrm{~A}$		4	4.5	Ω

Notes

${ }^{(1)}$ Defined by design, not subject to production test.

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
Ciss	Input capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	-	235	-	pF
Coss	Output capacitance		-	22	-	pF
Crss	Reverse transfer capacitance		-	3.5	-	pF
$\mathrm{Co}_{0(\mathrm{tr}}{ }^{(1)}$	Eq. capacitance time related	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ to 480 V	-	14	-	pF
$\mathrm{Co}_{\text {(er) }}{ }^{(2)}$	Eq. capacitance energy related		-	10		pF
Q_{g}	Total gate charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=480 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \text { to } 10 \mathrm{~V} \end{aligned}$ (see Figure 16: "Test circuit for gate charge behavior")	-	12	-	nC
Q_{gs}	Gate-source charge		-	1.8	-	nC
Q_{gd}	Gate-drain charge		-	7.7	-	nC
R_{G}	Gate input resistance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~A}$	-	7	-	Ω

Notes:

${ }^{(1)}$ Coss eq. time related is defined as a constant equivalent capacitance giving the same charging time as Coss when VDs increases from 0 to 80% VDSs
${ }^{(2)} \mathrm{C}_{\text {oss eq }}$. energy related is defined as a constant equivalent capacitance giving the same stored energy as $\mathrm{C}_{\text {oss }}$ when $V_{D S}$ increases from 0 to $80 \% V_{D S S}$

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-on delay time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=300 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=1 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$ (see Figure 15: "Test circuit for resistive load switching times" and Figure 20: "Switching time waveform")	-	10	-	ns
tr	Rise time		-	8.5	-	ns
td(off)	Turn-off delay time		-	23.5	-	ns
t_{f}	Fall time		-	21	-	ns

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
ISD ${ }^{(1)}$	Source-drain current		-		0.6	A
Iscm ${ }^{(1)}$	Source-drain current (pulsed)		-		2.4	A
$\mathrm{V}_{\text {SD }}{ }^{(2)}$	Forward on voltage	$\mathrm{ISD}_{\text {S }}=2 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-		1.5	V
$\mathrm{trr}^{\text {r }}$	Reverse recovery time	$\begin{aligned} & \mathrm{I} \mathrm{SD}=2 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{DD}}=60 \mathrm{~V} \end{aligned}$ (see Figure 17: "Test circuit for inductive load switching and diode recovery times")	-	200		ns
Qrr	Reverse recovery charge		-	800		nC
IRRM	Reverse recovery current		-	8		A
$\mathrm{trr}^{\text {r }}$	Reverse recovery time	$\begin{aligned} & \mathrm{I}_{\mathrm{SD}}=2 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{DD}}=60 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$ (see Figure 17: "Test circuit for inductive load switching and diode recovery times")	-	230		ns
Qrr	Reverse recovery charge		-	950		nC
IRRM	Reverse recovery current		-	8.5		A

Notes:

${ }^{(1)}$ Pulse width limited by safe operating area.
${ }^{(2)}$ Pulsed: pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{(\mathrm{BR}) \mathrm{GSO}}$	Gate-source breakdown voltage	$\mathrm{I} \mathrm{IGS}= \pm 1 \mathrm{~mA}, \mathrm{ID}=0 \mathrm{~A}$	30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection,thus eliminating the need for additional external componentry.

2.1 Electrical characteristics (curves)

Figure 3: Thermal impedance

Figure 4: Output characteristics

Figure 5: Transfer characteristics

Figure 6: Gate charge vs gate-source voltage

Figure 7: Static drain-source on-resistance

Figure 10: Normalized gate threshold voltage vs temperature

Figure 11: Normalized on-resistance vs temperature

Figure 12: Normalized $\mathbf{V}_{(\mathrm{BR}) \text { Dss }}$ vs temperature

Figure 13: Output capacitance stored energy

Figure 14: Maximum avalanche energy vs temperature

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

4.1 TO-92 ammopack package information

Figure 21: TO-92 ammopack package outline

Table 10: T0-92 ammopak mechanical data

Dim.	$\mathbf{m m}$		
	Min.	Typ.	Max.
A1			4.80
T			3.80
T1			1.60
T2	0.45	0.47	2.30
d	12.50	12.70	0.48
P0	5.65	6.35	12.90
P2	2.40	2.50	7.05
F1, F2	4.98	5.08	2.94
F3	-2.00		5.48
delta H	17.50	18.00	2.00
W	5.50	6.00	19.00
W0	8.50	9.00	6.50
W1			9.25
W2		18.50	0.50
H	15.50	16.00	21.00
H0		25.00	18.20
H1	0.50	1.00	27.00
H3	3.80	4.00	2.00
D0			4.20
t	3.00		0.90
L	-1.00		11.00
delta P			1.00

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
19-Jul-2012	1	First release.
24-Jan-2017	2	Modified title, features and description on cover page Modified Table 2: "Absolute maximum ratings", Table 5: "On/off states" and Table 9: "Gate-source Zener diode" Modified: Figure 11: "Normalized on-resistance vs temperature" Updated Section 4.1: "TO-92 ammopack package information"
Minor text changes		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D
TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C
IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI
DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384
NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956
NTE2911 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B

